rashodnikoff
?>

ПражненияФункция задана формулой f(x) = -3х + 10. Найдиа) f(-1); б) f(0);0.5​

Алгебра

Ответы

inna-zub

a)13; b)10

Объяснение:

f(x)=-3x+10

a) f(-1); x=-1

f=-3•(-1)+10=3+10=13

f(-1)=13

b)f(0); x=0

f=-3•0+10=0+10=10

f(0)=10

Playintim405374

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Объяснение:

\left \{ {{3x-y=5} \atop {3x^{2}+y^{2}=13}} \right. ;

Выражаем из верхнего уравнения переменную "у":

\left \{ {{y=3x-5} \atop {3x^{2}+y^{2}=13}} \right. ;

Подставляем полученное выражение в нижнее уравнение вместо "у":

\left \{ {{y=3x-5} \atop {3x^{2}+(3x-5)^{2}=13}} \right. ;

Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:

(a-b)^{2}=a^{2}-2ab+b^{2};

(3x-5)^{2}=(3x)^{2}-2 \cdot 3x \cdot 5+5^{2}=3^{2} \cdot x^{2}-30x+25=9x^{2}-30x+25;

\left \{ {{y=3x-5} \atop {3x^{2}+9x^{2}-30x+25=13}} \right. ;

Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:

\left \{ {{y=3x-5} \atop {(3+9) \cdot x^{2}-30x+25=13}} \right. ;

Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+25-13=0}} \right. ;

Выполним вычитание:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+12=0}} \right. ;

Разделив все части нижнего уравнения на 6, получим:

\left \{ {{y=3x-5} \atop {2x^{2}-5x+2=0}} \right. ;

Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:

\left \{ {{y=3x-5} \atop {x^{2}-2\frac{1}{2}x+1=0}} \right. ;

Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:

\left \{ {{x_{1}+x_{2}=-(-2\frac{1}{2})} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Минус перед скобкой и минус после скобки дают плюс:

\left \{ {{x_{1}+x_{2}=2\frac{1}{2}} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Корнями этой системы являются числа 1/2 и 2.

Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:

\left \{ {{y=3 \cdot \frac{1}{2}-5} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=\frac{3}{2}-\frac{10}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=-\frac{7}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{x=\frac{1}{2}} \atop {y=-3\frac{1}{2}}} \right. ;

\left \{ {{y=3 \cdot 2-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{y=6-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{x=2} \atop {y=1}} \right. ;

Мы получили две пары корней:

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Они являются решениями системы.

andy74rus36

докажем утверждение от противного.

можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.

переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.

или, иначе говоря, i′ пересекает i.

возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.

все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит

следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.

но из условия следует конечность их числа в любом квадрате.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

ПражненияФункция задана формулой f(x) = -3х + 10. Найдиа) f(-1); б) f(0);0.5​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ostapbender1111
nanasergevn
v79150101401
Sergei-Gradus199
mirdetzhuk79
Artur-62838
Vladimirovich58
adman7
Yevgeniya Bessonov
Dampil
elenaperemena8
dashanna04225
igorshevkun
baranovaas
moidela87