Объяснение:
1.
Функция квадратичная, графиком является парабола.
Коэффициент а = 1/4 > 0, значит ветви параболы направлены вверх.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈ [ 0 ; + ∞ ).
2. у = - 2х²
Функция квадратичная, графиком является парабола.
Коэффициент а = - 2 < 0, значит ветви параболы направлены вниз.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈( - ∞ ; 0 ]
Поделитесь своими знаниями, ответьте на вопрос:
Тест, очень нужно, которые есть! Розв’яжіть нерівність, зобразіть множину її розв’язків на координатній прямій та запишіть цю множину у вигляді числового проміжку: ( ) а) x – 2 0; е) 3x + 11 > 5. Розв’яжіть подвійну нерівність: ( ів) а) –1 < 7 + 2y < 4; б) 4 < 8 – 3x ≤ 10; У саду ростуть яблуні, вишні і сливи, кількості яких відносяться, як 5 : 4 : 2 відповідно. Якою може бути найменша кількість вишень, якщо всього дерев у саду не менше 120? ( )
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.