-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
Поделитесь своими знаниями, ответьте на вопрос:
ответьте на вопросы по рисунку 1 .Определите значение функции соответствующее значению аргумента равному 4 2. определить значение аргумента при которых значение функции равно 5 3. Укажите промежутки возрастания и убывания 4. промежутки знакопостоянства
1. 5.
2. -2, 4.
3. Убывание: (-∞ ; 1] Возрастание: [1 ; +∞).
4. y > 0 на промежутках: (-∞ ; -1), (3 ; +∞).
y < 0 на промежутке: (-1 ; 3).
Сделано с любовью.