Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3
у 7 0 -5 -8 -9 -8 -5 0
Смотрим на график и полученные значения х₁ -3 и х₂=3.
Вывод: у>0 при х∈(-∞, -3) ∪(3, ∞)
(у больше нуля при х от - бесконечности до -3 и от 3
до + бесконечности)
3)у=5-х²
у= -х²+5
-х²+5=0
х²-5 =0
х²=5
х=±√5 (≈2,2)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у -11 -4 1 4 5 4 1 -4 -11
Смотрим на график и полученные значения х₁= -√5 и х₂=√5.
Ветви параболы направлены вниз.
Вывод: у>0 при х∈(-√5, √5)
(у больше нуля от -2,2 до 2,2)
proea
11.07.2022
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Объяснение:
1)у=х²-9
х²-9=0
х²=9
х₁,₂=±√9
х₁,₂=±3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3
у 7 0 -5 -8 -9 -8 -5 0
Смотрим на график и полученные значения х₁ -3 и х₂=3.
Вывод: у>0 при х∈(-∞, -3) ∪(3, ∞)
(у больше нуля при х от - бесконечности до -3 и от 3
до + бесконечности)
3)у=5-х²
у= -х²+5
-х²+5=0
х²-5 =0
х²=5
х=±√5 (≈2,2)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у -11 -4 1 4 5 4 1 -4 -11
Смотрим на график и полученные значения х₁= -√5 и х₂=√5.
Ветви параболы направлены вниз.
Вывод: у>0 при х∈(-√5, √5)
(у больше нуля от -2,2 до 2,2)