откуда нужные числа 295 (301), 299(305), 394(400), 398(404)
KIRILLSHURYGIN98
25.12.2022
По определению среднее арифметическое равно общей сумме членов деленное на их общее количество:
откуда сумма n первых членов арифметической последовательности равна
в частности
отсюда второй член последовательности равен
разность арифметической прогрессии равна
значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии
////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
Тогда возможные трицифровые числа А с учетом кратности суммы цифр на 4, (в скобках А+6):
202 (208), 206 (212), 301 (307), 305 (312), 309(315),
211 (217), 215 (221), 219 (225), 310 (316) ,314 (320), 318 (324),
220 (226), 224 (230), 228 (234), 323 (329), 327(333),
233 (239), 237 (243), 332 (338) ,336 (342),
242 (248), 246 (252), 341 (347) ,345 (351), 349(355),
251 (257), 255 (261), 259 (265) ,350 (356), 354(360), 358(364),
260 (266), 264 (270), 268 (274) ,363 (369), 367(373),
273 (279), 277 (283), 372 (378) ,376 (382),
282 (288), 286 (292), 381 (387) ,385 (391), 389(395),
291 (297), 295 (301), 299 (305) ,390 (396),394 (400), 398(404)
откуда нужные числа 295 (301), 299(305), 394(400), 398(404)