sahar81305
?>

Вычислите, представив угол в виде суммы или разности: sin105° cos15° tg75°

Алгебра

Ответы

спец Михасов

решение на фотографии


Вычислите, представив угол в виде суммы или разности: sin105° cos15° tg75°
oldprince840

1)\ \ sin105^\circ =sin(60^\circ +45^\circ )=sin60^\circ \cdot cos45^\circ +sin45^\circ \cdot cos60^\circ =\\\\\\=\dfrac{\sqrt3}{2}\cdot \dfrac{\sqrt2}{2}+\dfrac{\sqrt2}{2}\cdot \dfrac{1}{2}=\dfrac{\sqrt2\cdot (\sqrt3+1)}{4}=\dfrac{\sqrt6+\sqrt2}{4} \\\\\\2)\ \ cos15^\circ =cos(45^\circ -30^\circ )=cos45^\circ \cdot cos30^\circ +sin45^\circ \cdot sin30^\circ =\\\\\\=\dfrac{\sqrt2}{2}\cdot \dfrac{\sqrt3}{2}+\dfrac{\sqrt2}{2}\cdot \dfrac{1}{2}=\dfrac{\sqrt2\cdot (\sqrt3+1)}{4}=\dfrac{\sqrt6+\sqrt2}{4}

3)\ \ tg75^\circ =tg(45^\circ +30^\circ )=\dfrac{tg45^\circ +tg30^\circ }{1-tg45^\circ \cdot tg30^\circ }=\dfrac{1+\frac{\sqrt3}{3}}{1-1\cdot \frac{\sqrt3}{3}}=\dfrac{3+\sqrt3}{3-\sqrt3}=\\\\\\=\dfrac{\sqrt3\cdot (\sqrt3+1)}{\sqrt3\cdot (\sqrt3-1)}=\dfrac{(\sqrt3+1)^2}{(\sqrt3-1)(\sqrt3+1)}=\dfrac{(\sqrt3+1)^2}{3-1}=\dfrac{4+2\sqrt3}{2}=2+\sqrt3

slonikkristi69
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=\frac{a_n-a_1}{d}+1
n=\frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=\frac{a_1+a_{23}}{2}*n
S_{23}=\frac{11+99}{2}*23=1265
ответ: 1265
Aleksei Aleksandrovna649
Дадим ФИЗИЧЕСКИЙ ответ на эту задачу:
Дано:
D₁=2 см      R₁=1 см
D₂= 3 см     R₂=1,5 см

m₂ - ?

Предположим, что шары изготовлены из одного и того же материала (у шаров одинаковая плотность ρ, что в условии задачи, к сожалению, не указано)
Масса тела определяется по формуле:
m=ρ*V
а его объем по формуле:
V = (4/3)*π*R³

Тогда:
m = (4/3)*ρ*π*R³

Имеем: 
m₁ = (4/3)*ρ*π*R₁³        (1)
m₂ = (4/3)*ρ*π*R₂³        (2)

Разделим (2) на (1) и после сокращения получаем ВАЖНОЕ правило:
m₂ / m₁ = (R₂/R₁)³
- отношение МАСС шаров равно КУБУ отношения их радиусов.

Подставляем данные:
m₂ / 48 = (1,5 /1)³
m₂ = 48*1,5² = 48*3,375 = 162 г
ответ:
МАССА шара (но не его ВЕС) равна 162 грамма

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите, представив угол в виде суммы или разности: sin105° cos15° tg75°
Ваше имя (никнейм)*
Email*
Комментарий*