пусть се =х , тогда ве= 32-х, ад= 16-х вд= 24-(16-х) = 8+х. треугольники вде и авс подобны по двум углам ( угол в -общий , угол вед= углу с как соответственные при параллельных де и ас и секущей вс) значит вд/ ва = ве/вс тоесть (8+х) : 24= (32-х) : 4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
вд= 8+9 целых 1/7= 17 целых 1/7
также пропорциональны стороны вд : ав= де : ас подстави данные 17 целых 1/7 : 24= де : 28, де = 17 целых 1/7 * 28 : 24 = 20 см
ответ 20см
Поделитесь своими знаниями, ответьте на вопрос:
Тригонометрия. 3, 4, 9, 12 с объяснением.
Найдем значение выражения 2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a), если известно а = pi/6.
Подставим известное значение в само выражение и вычислим его значение. То есть получаем:
2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a);
2 * ctg (pi/2 - 4 * pi/6) * tg (pi/2 + 2 * pi/6) * ctg (4 * pi/6);
2 * ctg (pi/2 - 2 * pi/3) * tg (pi/2 + pi/3) * ctg (2 * pi/3);
2 * ctg ((3 * pi - 4 * pi)/6) * tg ((3 * pi + 2 * pi)/6) * ctg (2 * pi/3);
2 * ctg (-pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);
-2 * ctg (pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);
-2 * √3 * (-√3/3) * (-√3/3) = -2 * (√3/3) = -2 * √3/3.
Объяснение:
Найдем значение выражения 2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a), если известно а = pi/6.
Подставим известное значение в само выражение и вычислим его значение. То есть получаем:
2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a);
2 * ctg (pi/2 - 4 * pi/6) * tg (pi/2 + 2 * pi/6) * ctg (4 * pi/6);
2 * ctg (pi/2 - 2 * pi/3) * tg (pi/2 + pi/3) * ctg (2 * pi/3);
2 * ctg ((3 * pi - 4 * pi)/6) * tg ((3 * pi + 2 * pi)/6) * ctg (2 * pi/3);
2 * ctg (-pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);
-2 * ctg (pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);
-2 * √3 * (-√3/3) * (-√3/3) = -2 * (√3/3) = -2 * √3/3.