Tatianamir765654
?>

СОЧ 4. Разложите на множители: a) 3a(x -y)+ b(x -y) b) 5x +5y -ax -ay ​

Алгебра

Ответы

AlekseiMardanova

а) 3а(х-у)+b(x-y)= (3a+b)(x-y)

b) 5x+5y-ax-ay= x(5-a)+y(5-a)=(x+y)(5-a)

veronica1344
А) х^2-4х+3=0
а = 1;в=-4;с=3;К=- 4/2=-2
Д= К^2-ас
Д= (-2)^2-1*3=4-3=1
х1,2= - к +- √Д/а
х1,2=2+- √ 1/1
х1 = 2- √ 1/1= 2-1/1=1
х2 = 2+ √ 1/1=2+1/1=3
ответ : х1 = 1; х2 = 3
б)х^2+9х=0
х (х+9)=0
х=0 или х+9=0
х=-9
ответ : х1 = 0; х2 = -9
в)7х^2-х-8=0
а = 7; в= -1; с=- 8
Д= в^2-4ас
Д= (-1)^2-4*7*(-8)=1+224=2225
х1,2= -в+-√Д/2а
х1=1- √225/2×7=1-15/14=-14/14=- 1
х2= 1+ √225/2×7=1+15/14=16/14=Одна целая две четвертых, сокращаем одна целая одна вторая. умножаем на 5= одна целая пять десятых или 1,5
ответ : х1 = -1; х2 = 1,5
г) 2х^2-50=0
х^2=50:2
х^2=25
х1,2=+- √25
х1,2=+-5
ответ : х1 = -5;х2 = 5
polotovsky
7х-2у=27,
5х+2у=33.(1)  Предположим, что х и у - это такие числа, при которых оба равенства (1) верны, т.е. (х,у) - решение системы (1).
  Сложим почленно эти равенства. Записывается это так:
7х-2у=27, + 5х+2у=33. (7х+5х)+(-2у+2у)=27+33   Из этого уравнения находим: 12х+0у=60, 12х=60, откуда х=5.
  Теперь подставим х=5 в одно из уравнений системы (1), например в первое: 7*5-2у=27.
  Из полученного уравнения находим: 35-2у=27, -2у=-8, у=4.
  Итак, если система (1) имеет решение, то этим решением может быть только пара чисел: х=5, у=4.
  Убедимся, что х=5, у=4 в самом деле являются решением системы (1). Это можно сделать простой проверкой.
7*5-2*4=27,
5*5+2*4=33.  Оба равенства верные.
  Итак система (1) имеет решение: х=5, у=4.

  Рассмотренный решения системы уравнений называется алгебраического сложения. Для исключения одного из неизвестных нужно выполнить сложение или вычитание левых и правых частей уравнения системы.

Задача 2. Решить систему уравнений

5х+3у=29,
5х-4у=8.(2)  Вычтем почленно эти равенства. _ 5х+3у=29, 5х-4у=8. (5х-5х)+(3у-(-4у))=29-8   Из этого уравнения находим: 0х+7у=21, 7у=21, откуда у=3.
  Теперь подставим у=3 в одно из уравнений системы (2), например во второе: 5х-4*3=8.
  Из этого уравнения находим: 5х=8+12, 5х=20, х=4.
  ответ. х=4, у=3.

  Из рассмотренных примеров видно, что алгебраического сложения оказывается удобным для решения системы в том случае, когда в обоих уравнениях коэффициенты при каком-нибудь неизвестном одинаковы или отличаются только знаком. Если это не так, то нужно постараться уравнять модули коэффициентов( коэффициенты без учета знака) при каком-нибудь одном из неизвестных, умножая левую и правую части каждого уравнения на подходящее число.

Задача 3. Решить систему уравнений

3х+2у=10,
5х+3у=12.  Я хочу уравнять коэффициенты обоих уравнений при у. Для этого я первое уравнение умножаю на 3, а второе - на 2. Получу:
3х+2у=10, | *3
5х+3у=12. | *29х+6у=30,
10х+6у=24.  Почленно вычту из второго уравнения первое. _ 10х+6у=24, 9х+6у=30. х=-6   Подставлю значение х=-6 в первое уравнение системы, получу: 3*(-6)+2у=10, -18+2у=10, 2у=28, у=14.
  ответ. х=-6, у=14.

  Итак, для решения системы уравнений алгебраического сложения нужно:
 1) уравнять модули коэффициентов при одном из неизвестных;
 2) складывая или вычитая почленно полученные уравнения , найти одно неизвестное;
 3) подставляя найденное значение в одно из уравнений исходной системы, найдем второе неизвестное.

Задача 4. Решить систему уравнений

4х-3у=14,
х+2у=-2.  1) уравниваем коэффициенты при х:4х-3у=14, | *1
  х+2у=-2. | *44х-3у=14,
4х+8у=-8.  2) почленно вычитаем из второго уравнения первое
_ 4х+8у=-8, 4х-3у=14. 8у-(-3у)=-8-14   Откуда получаем, что 11у=-22, у=-2.
  3) подставляем у=-2 во второе уравнение исходной системы.
  Получаем: х+2*(-2)=-2, х-4=-2, х=2.
  ответ. х=2, у=-2. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

СОЧ 4. Разложите на множители: a) 3a(x -y)+ b(x -y) b) 5x +5y -ax -ay ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Klicheva_Ermachenkova1536
Plamia7917
AleksandrIvanovich1273
yurick2071488
Sidunevgeniya
vvk2008
Викторович
ecocheminnov437
смирнов1127
marver201040
clic1968420
leeteukism
s45983765471717
shhelina
АнтонАртем