moonligh3560
?>

Назовём высотой натурального числа N наибольшее возможное n, при котором уравнение N=x1x2...xn разрешимо в целых числах xi≥2. Сколько существует чисел максимальной высоты, не превосходящих 1015?

Алгебра

Ответы

Alesander-Isaev684

ответ:6

Объяснение:1. Заметим, что никакое число, не превосходящее 1015, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это

2222=216, при этом это число больше 1015.

 2. Между тем числа высоты 3, не превосходящие 1015, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1015.

 3. Заметим, что

 29≤1015≤210,

 36≤1015≤37,

 44≤1015≤45,

 54≤1015≤55,

 63≤1015≤64.

 4. Найдём количество чисел высоты 3, не превосходящих 1015. Это то же самое, что найти количество решений неравенства:

x1x2x3≤1015, xi≥2.

Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.

Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.

Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.

 5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1015.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Назовём высотой натурального числа N наибольшее возможное n, при котором уравнение N=x1x2...xn разрешимо в целых числах xi≥2. Сколько существует чисел максимальной высоты, не превосходящих 1015?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zyf0066
gassvetlana
Anton-Yurevich222
lobanosky162
Горина
mikhail
dp199088206
ramco1972
Alnkseevna
missbuhgalter2013
Борисовна
insan10
Захаров-Иванович
Chistova-Dmitrii1162
chikunova87194