КОРМИЛИЦЫНА
?>

Виконати №356(1), 358, 361(1) зі сторінки фото.

Алгебра

Ответы

Abdullaev

\tt \displaystyle b=-\frac{5}{2} \\\\c=\frac{169}{16}

Объяснение:

Даны касательные y₁ = 4·x и y₂ = -9·x к графику функции f(x)=x²+b·x+c.

Пусть прямая y₁ касается к графику функции f(x) в точке x₁, а прямая y₂ касается к графику функции f(x) в точке x₂, то есть:

f(x₁) = y₁(x₁), f'(x₁) = y₁'(x₁) , f(x₂) = y₂(x₂), f'(x₂) = y₂'(x₂)      (1).

Так как  y₁' = (4·x)' = 4, y₂' = (-9·x) = -9 и f'(x) = (x²+b·x+c)'=2·x+b, то подставляя в уравнения (1) получим 4 уравнения:

x₁²+b·x₁+c = 4·x₁       (2)

2·x₁+b = 4                 (3)

x₂²+b·x₂+c = -9·x₂     (4)

2·x₂+b = -9                (5)

Из (3) получим x₁ = (4-b)/2 и подставим в (2):

((4-b)/2)²+b·((4-b)/2)+c = 4·(4-b)/2 или

4-2·b+b²/4+2·b-b²/2+с=8-2·b.

Упростив последнее равенство и получим:

c=4+b²/4-2·b.             (6)

Из (5) получим x₂ = (-9-b)/2 и подставим в (4):

((-9-b)/2)²+b·((-9-b)/2)+c = -9·(-9-b)/2 или

81/4+9·b/2+b²/4-9·b/2-b²/2+с=81/2+9·b/2.

Упростив последнее равенство и получим:

c=81/4+b²/4+9·b/2.      (7)

Приравниваем выражения (6) и (7):

4+b²/4-2·b = 81/4+b²/4+9·b/2 или

13·b/2 = 4-81/4.

Отсюда

b = (-65/4):(13/2) = -5/2.

Подставим последнее в (6):

c= 4+(-5/2)²/4-2·(-5/2) = 4+25/16+5 = 9+25/16 = 169/16.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Виконати №356(1), 358, 361(1) зі сторінки фото.
Ваше имя (никнейм)*
Email*
Комментарий*