Поделитесь своими знаниями, ответьте на вопрос:
Задачи на совместную работу. Урок 3 Если Нартаю потребуется некоторое количество дней для выполнения работы, то Ертаю потребуется втри раза больше дней. При совместной работе они выполнят работу на три дня раньше, чем если быНартай работал самостоятельно. За сколько дней каждый из них выполнит работу самостоятельно?ответ. Нартай - дней, а Ертай -дней.НазадПроверитьОбъсемье решение
ответ:Данный урок мы посвятим решению типовых задач на построение графика функции . Вспомним определение квадратного корня.
Определение. Квадратным корнем из неотрицательного числа называется такое неотрицательное число , квадрат которого равен .
.
Изобразим график – это правая ветвь параболы (рис. 1).
Рис. 1.
На графике наглядно виден смысл вычисления квадратного корня. Например, если рассмотреть ординату 16, то ей будет соответствовать абсцисса 4, т. к. . Аналогично, ординате 9 на графике соответствует точка с абсциссой 3, поскольку , ординате 11 соответствует абсцисса , т. к. (квадратный корень из 11 не извлекается в целых числах).
Теперь вспомним график функции (рис. 2).
Рис. 2.
На графике для наглядности изображены несколько точек, ординаты которых вычисляются с извлечения квадратного корня: , , .
Примеры на преобразование графиков с корнями
Пример 1. Постройте и прочтите график функции: а) , б) .
Решение. а) Построение начинается с простейшего вида функции, т. е. в данном случае с графика (пунктиром). Затем для построения искомого графика график функции необходимо сдвинуть влево на 1 (рис. 3). При этом все точки графика сдвинутся на 1 влево, например, точка с координатами (1;1) перейдет в точку с координатами (0;1). В результате получаем искомый график (красная кривая). Проверить такой легко при подстановке нескольких значений аргумента.
Рис. 3.
Прочтем график: если аргумент меняется от до , функция возрастает от 0 до . Область определения (ОДЗ) при этом требует, чтобы подкоренное выражение было неотрицательным, т. е. .
б) Для построения графика функции поступим аналогичным образом. Сначала строим график (пунктиром). Затем для построения искомого графика график функции необходимо сдвинуть вправо на 1 (рис. 4). При этом все точки графика сдвинутся на 1 вправо, например, точка с координатами (1;1) прейдет в точку с координатами (2;1). В результате получаем искомый график (красная кривая).
Рис. 4.
Прочтем график: если аргумент меняется от до , функция возрастает от 0 до . Область определения (ОДЗ) аналогична предыдущему случаю: .
Замечание. На указанных примерах несложно сформулировать правило построения функций вида:
.
Пример 2. Постройте и прочтите график функции: а) , б) .
Решение. а) Этот пример также демонстрирует преобразование графиков функций, но только уже другого типа. Начинаем построение с простейшей функции (пунктиром). Затем график построенной функции смещаем на 2 вверх и получаем на рисунке 5 искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;3).
Рис. 5.
Прочтем график: если аргумент меняется от 0 до , функция возрастает от 2 до . Область определения (ОДЗ): .
б) Также начинаем построение с простейшей функции (пунктиром). Затем график построенной функции (рис. 6) смещаем на 1 вниз и получаем искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;0).