Ask___
Advice
Главная
О сервисе
О нас
Правила пользования сайтом
Авторское право
Политика конфиденциальности
Ключ для indexNow
Скрипт от рекламы
Задать вопрос
Искать
Главная
Алгебра
Ответы на вопрос
Олегович Паутова
01.09.2022
?>
Y=3x^2-7x-8y(2)=?y(x)=-2;x=?
Алгебра
Ответить
Ответы
Suralevartem
01.09.2022
Arccos(cosx)=x , только если 0°≤х≤180° .
Так как угол в 240° не входит в указанный промежуток, то необходимо привести этот угол к промежутку тригонометрических формул, учитывая периодичность и чётность тригонометрических функций.
сos240°=cos(360°-120°)=cos(-120°)=cos120° , 120°∈[ 0°,180°] °⇒
arccos(cos240°)=arccos(cos120°)=120°.
arctg(tgx)=x , только если -90°<x<90° .
tg(-120°)= -tg(120°)= -tg(180°-60°)=-(-tg60°)=tg60° , 60°∈(-90°,90°) ⇒
arctg(tg(-120°))=arctg(tg60°)=60°
arcsin(sinx)=x , только если -90°≤x≤90° .
sin120°=sin(180°-60°)=sin60° , 60°∈[-90°90°] ⇒
arcsin(sin120°)=arcsin(sin60°)=60°
arccos(cos240°)+arctg(tg(-120°))+arcsin120°=120°+60°+60°=240°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Y=3x^2-7x-8y(2)=?y(x)=-2;x=?
Ваше имя (никнейм)*
Email*
Комментарий*
Согласен с
политикой конфиденциальности
Отправить вопрос
▲
Так как угол в 240° не входит в указанный промежуток, то необходимо привести этот угол к промежутку тригонометрических формул, учитывая периодичность и чётность тригонометрических функций.
сos240°=cos(360°-120°)=cos(-120°)=cos120° , 120°∈[ 0°,180°] °⇒
arccos(cos240°)=arccos(cos120°)=120°.
arctg(tgx)=x , только если -90°<x<90° .
tg(-120°)= -tg(120°)= -tg(180°-60°)=-(-tg60°)=tg60° , 60°∈(-90°,90°) ⇒
arctg(tg(-120°))=arctg(tg60°)=60°
arcsin(sinx)=x , только если -90°≤x≤90° .
sin120°=sin(180°-60°)=sin60° , 60°∈[-90°90°] ⇒
arcsin(sin120°)=arcsin(sin60°)=60°
arccos(cos240°)+arctg(tg(-120°))+arcsin120°=120°+60°+60°=240°