Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
1) Используя график функции у=ах²+bх+с, найдите верное решение неравенства ах²+bх+с <0.А) (-∞; +∞);В) (-∞; ) ∪ (n; +∞);С) (; n);D) (-∞; ] ∪ [n; +∞);Е) [; n].
Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см