ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn
Поделитесь своими знаниями, ответьте на вопрос:
Решите показательное уравнение 0, 125*4^2x-3=(0.25/корень из 3)^-x
ответ: f(x)=3x⁴ - 12x² + 5 на [-2; 1]
наш план действий:
1) ищем производную;
2) приравниваем её к 0 и решаем получившееся уравнение;
3) смотрим какие корни попали в указанный промежуток;
4) ищем значения функции в этих корнях и на концах промежутка;
5) пишем ответ.
начали?
1) f'(x) = 12x³ -24x
2) 12x³ - 24x = 0
x(12x² -24) = 0
x = 0 или 12x² -24 = 0
12x² = 24
x² = 2
x = +-√2
3) из этих 3-х чисел в данный промежуток попали: - √2 и 0
4) а) х = -√2
f(-√2) = 3*(-√2)⁴ - 12*(-√2)² + 5 = 12 -24 +5 = -7
б) x = 0
f(0) = 5
в) x = -2
f(-2) = 3*2⁴ -12*2² +5 = 48 -48 +5 = 5
г) x = 1
f(1) = 3 -12+5 = -4
5) ответ: max f(x) = f(0) = f(-2) = 5
min f(x) = f( -√2) = -7