Объяснение:
Монета брошена шесть раз.
В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.
Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.
Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,
второй раз - Орел, третий раз - Решка и т.д..
Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,
то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).
Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).
Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".
Подсчитаем количество исходов, при которых в цепочке
Орел будет встречаться 0, 1 или 2 раза.
- 1 исход (Орел не выпал ни разу)
Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов (Орел выпал 1 раз).
С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (Орел выпал 2 раза).
Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)
64 - (1+6+15) = 42.
Р = 42/64 = 0,65625
для такого есть два способа решения:
1 способ (самый простой): проверить каждый вариант ответа, подставляя его вместо икса. если получиться ноль, тогда это и есть корень уравнения.
при : (совпало) при : (совпало) при : (совпало).2 способ: решить это уравнение, зная правило, что если при умножении чисел или выражений получается ноль, то хотя бы одно из них должно быть равно нулю:
(в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень)ответ: корнем уравнения являются числа а) 7; б) -3; в) 0.
Поделитесь своими знаниями, ответьте на вопрос:
4) решите неравенство а)5^(х-1)< 25 б)3^(-2х)< √3
а)5^(х-1)< 25
5^(x-1)< 5^2
x-1< 2
x< 3
(-бесконечность ; 3)
б)3^(-2х)< √3
3^(-2x)< 3^(1/2)
-2x< 1/2
x> -1/2 : 2
x> -1/4
(-1/4; +бесконечность)