Решить неравенства методом интервалов.
Объяснение:
1) (х+7) (х+5 )(х-9)≤0
Найдем нули : х+7=0 →х=-7 ; х+5=0 →х=-5 ; х-9=0 →х=9.
Метод интервалов - + - +
________-7________-5_______9______
( кружочки около чисел закрашенные) .Определяется знак любого промежутка , далее знаки чередуются, т.к. каждый множитель данного неравенства нечетной степени. Я брала х=0 ( третий промежуток) . Значение левой части отрицательно.
Выбираем промежутки , где стоит знак "-".
х∈ (-∞ ; -7] ∪ [-5;-9]
3)(х²-64)(х²+10х+9)≥0.
Разложим на множители х²+10х+9 применив т. Виета : х₁+х₂=-10 , х₁*х₂=9 ,х₁=-1,х₂=-9. Получим х²+10х+9=(х+1)(х+9).
Разложим на множители х²-64 по формуле разности квадратов :
х²-64=(х-8)(х+8).
Получили неравенство (х-8)(х+8)(х+1)(х+9)≥0
Нули каждой скобки : -9, -8, -1, 8. Кружочки на схеме закрашены .
Метод интервалов : При х=0, знак 4 промежутка "-". Все знаки чередуются , т.к. каждый множитель данного неравенства нечетной степени.
+ - + - +
_____-9____ -8_____ -1______ 8______
Выбираем те , где знак "+". х∈ (-∞ ; -9] ∪ [-8;-1]∪ [8;+∞)/
7)(3-х)²(х+2)²(х-1) (2x-5)<0.
Нули каждой скобки : -2; 1; 2,5 ; 3. Кружочки на схеме НЕ закрашены .
Метод интервалов : При х=0, знак 2 промежутка "+". Знаки чередуются только у значений нечетной степени. Около значений скобок четных степеней не чередуются ( т.е около чисел -2 и 3)
- - + - -
_____-2____ 1_____ 2,5______ 3______
Выбираем те , где знак "-". х∈ (-∞ ; -2) ∪ (-2; 1) ∪ (2,5;3) ∪ (3;+∞)
Даны вершины А(х1; у1), В(х2; у2), С(х3, у3) треугольника.
Сделать чертеж и найти:
1) длину стороны АВ;
2) внутренний угол А с точностью градуса;
3) уравнение и длину высоты, опущенной из вершины С;
4) точку пересечения высот;
5) уравнение медианы, проведенной через вершину С;
6) систему линейных неравенств, определяющих треугольник АВС.
А ( 1; -5 )
В ( 4; -4 )
С ( -2; -1 )
Сделаем чертёж:
1)длина стороны АВ: - длина стороны АВ.
2) внутренний угол А с точностью градуса:
Для поиска угла воспользуемся формулой . В данном случае k1=kАB, а k2=kАC - угловые коэффициенты прямых АВ и АС.
Найдем угловые коэффициенты по формуле: .
; ?
? А=arctg(-3)=180°-72°»108° - внутренний угол А.
3) уравнение и длину высоты, опущенной из вершины С:
Составим уравнение высоты CD.
Высота CD перпендикулярна стороне AB. По условию перпендикулярности двух прямых
Составим уравнение высоты CD по известной точке и угловому коэффициенту:
y-yс=k(x-xс)
y+1=-3.(x+2)
y+1=-3x-6
3x+y+7=0 - уравнение высоты (CD)
Найдем длину высоты CD по формуле для расстояния от точки до прямой:
Составим уравнение прямой AB по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАВ(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=x-1
x-3y-16=0 - уравнение (AB)
Тогда (ед. дл.) – длина высоты (СD).
4) точку пересечения высот:
Точку пересечения двух прямых можно найти, решив систему уравнений, задающих эти прямые, поэтому нужно найти уравнение еще одной высоты, например, BK.
Составим уравнение высоты (BK) по известной точке и угловому коэффициенту:
y-yВ=k(x-xВ)
y-4=3/4.(x-4) - Домножим на 4 обе части уравнения:
4y-16=3x-12
3x-4y+28=0 - уравнение (BK), тогда
(.) О:
Таким образом, высоты пересекаются в точке О: (-56/15;63/15)
5) уравнение медианы, проведенной через вершину С:
Найдем координаты точки E как координаты середины отрезка АВ:
(.)Е: (5/2; -9/2)
Запишем уравнение медианы (CE) по 2 точкам:
-7(x+2)=9(y+1)
-7x-14-9y-9=0
-7x-9y-23=0
7x+9y+23=0 уравнение медианы (CE).
6. Систему линейных неравенств, определяющих треугольник АВС:
Составим уравнение всех сторон треугольника:
Уравнение стороны АВ уже было составлено: x-3y-16=0
Составим уравнение прямой AС по угловому коэффициенту и точке A, принадлежащей прямой:
y-yА=kАC(x-xА)
y+5=(x-1) - Домножим на 3 обе части уравнения:
3y+15=-4x+4
4x+3y+11=0 - уравнение (АС)
Найдем уравнение стороны (ВС) по 2 точкам:
3.(х-4)=-6.(y+4)
x+2y-4+8=0
x+2y+4=0 - уравнение (BС)
Для определения знаков неравенств в левую часть каждого уравнения подставим координаты противоположной вершины, которая гарантированно принадлежит соответствующей полуплоскости:
Подставим (.)С (-2;-1) в уравнение (АВ) x-3y-16=-2-3.(-1)-16 =-15<0
Подставим (.)В (4;-4) в уравнение (АС) 4x+3y+11=4.4+3.(-4)+11=15>0
Подставим (.)А (1;-5) в уравнение (ВС) x+2y+4=1+2. (-5)+4=-5<0
Теперь можно записать систему неравенств:
1) длина стороны АВ: =
2) внутренний угол А с точностью градуса: А »108°;
3) уравнение и длина высоты, опущенной из вершины С: 3x+y+7=0 - (CD) иед.дл.
4) точка пересечения высот О: (-56/15;63/15);
5) уравнение медианы, проведенной через вершину С: 7x+9y+23=0 - (CE);
6) система линейных неравенств, определяющих треугольник АВС:
Поделитесь своими знаниями, ответьте на вопрос:
Турист рассчитывал проехать на мопеде расстояние от турбазы до города за 2 ч.однако, когда до города оставалось 6 км он снизил скорость на 3 км/ч и поэтому прибыл в город на 6 мин позже чем рассчитывал найдите расчётную скорость мопеда? систему составить
t1+t2=t+0.1=2.1
s=tv=2v - планировал
s=t1v+t2(v-3) - проезжал с разными скоростями
приравниваем
2v=t1v+t2(v-3)
вторая часть пути
6км=(v-3)t2
t2=6\(v-3)
итог решения - 15 км\ч