Нехай наше початкове число буде дорівнювати х. х=100%, тоді 30% від початкового числа будуть дорівнювати 0,3х.початкове число збільшили на 30 відсотків, тому число яке отримали буде дорівнювати х+0,3х=1,3х.потім зменшили число на 30%, але зауважу, зменшили не початкове число, а те число, яке ми отримали, тому це буде 30% від 1,3х.100 %=1,3х30%= оскільки наше число зменшили, то отримане число буде дорівнювати 1,3х-0,39х=0,91х . початкове число 1х, а отримане 0,91х. 1х-0,91х=0,09х отже число зменшилося на 9 %. відповідь: зменшиться на 9 %
milenaochirova01017424
02.05.2022
2sin(2x) + √2 - 1 = (√2 - 1)(sin x - cos x) 2sin(2x) - 2 + √2 + 1 = (√2 - 1)(sin x - cos x) придумал, как решить! 2sin(2x) - 2 = -2(1 - sin(2x)) = -2(sin^2 x - 2sin x*cos x + cos^2 x) = = -2(sin x - cos x)^2 подставляем -2(sin x - cos x)^2 + √2 + 1 = (√2 - 1)(sin x - cos x) 2(sin x - cos x)^2 + (√2 - 1)(sin x - cos x) - (√2 + 1) = 0 замена sin x - cos x = y 2y^2 + (√2 - 1)y - (√2 + 1) = 0 решаем квадратное уравнение d = (√2 - 1)^2 - 4*√2 + 1)) = 2 - 2√2 + 1 + 8(√2+1) = 11 + 6√2 = = 2 + 9 + 2*3√2 = (3 + √2)^2 x1 = (1 - √2 - 3 - √2)/4 = (-2 - 2√2)/4 = -(1 + √2)/2 ~ -1,2 > -√2 x2 = (1 - √2 + 3 + √2)/4 = 4/4 = 1 обратная замена y = sin x - cos x = √2*(1/√2*sin x - 1/√2*cos x) = = √2*(sin x*cos(pi/4) - cos x*sin(pi/4)) = √2*sin(x - pi/4) поскольку sin a ∈ [-1; 1], то √2*sin(x - pi/4) ∈ [-√2; √2] оба корня в этот промежуток. 1) √2*sin(x - pi/4) = -(1 + √2)/2 sin(x - pi/4) = -(1 + √2)/(2√2) = -(√2 + 2)/4 x1 = pi/4 - arcsin((√2 + 2)/4) + 2pi*k x2 = 3pi/4 + arcsin((√2 + 2)/4)) + 2pi*k 2) √2*sin(x - pi/4) = 1 sin(x - pi/4) = 1/√2 x3 = pi/4 + pi/4 + 2pi*n = pi/2 + 2pi*n x4 = pi/4 + 3pi/4 + 2pi*n = pi + 2pi*n
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
28 ! уравнение 4 и 5 с веткой что бы было понятно.