y=-x^2-4x - графиком функции является парабола, ветви направлены вниз
m=-b/2a = 4/2 = -2
y=-(-2)^2+4*2=4
(-2;4) - координаты вершины параболы
y=4+x - прямая, проходящая через точки (0;4), (-4;0)
Знайдемо обмежені лінії
\begin{gathered}-x^2-4x=4+x\\ x^2+5x+4=0\end{gathered}−x2−4x=4+xx2+5x+4=0
За т. Вієта: x_1=-1;\,\,\,\, x_2=-4x1=−1;x2=−4
Знайдемо площу фігури
\begin{gathered}\displaystyle \int\limits^{-1}_{-4} {(-x^2-4x-(4+x))} \, dx = \int\limits^{-1}_{-4} {(-x^2-5x-4)} \, dx =\\ \\ \\ =\bigg(- \frac{x^3}{3} - \frac{5x^2}{2}-4x\bigg)\bigg|^{-1}_{-4}= \frac{1}{3} - \frac{5}{2} +4- \frac{4^3}{3} + \frac{5\cdot4^2}{2} -16=4.5\end{gathered}−4∫−1(−x2−4x−(4+x))dx=−4∫−1(−x2−5x−4)dx==(−3x3−25x2−4x)∣∣∣∣∣−4−1=31−25+4−343+25⋅42−16=4.5
Объяснение:
Это
Поделитесь своими знаниями, ответьте на вопрос:
Найдите сумму всех натуральных чисел, кратных 7 и не превосходящих 130
найдём максимальное число, кратно 7 и меньше 130это 126 = 18*7получаем арифметическую прогрессиюa(n) = a1 +d(n-1)a1 = 7d = 7n = 18тогда сумма равна 1197s = (2a1 + d(n-1)*n/2 = (14 + 17*7)*18/2 = 1197