Объяснение:
В)касательная к графику в точке должна:
1)проходить через точку Xo
2)Иметь такой же угол наклона как и график в точке
Значит мы должны найти такое уравнение прямой которое соответствовало бы этим параметрам.
Угол наклона в точке характеризует производная в точке т.к по сути
производная в точке это тангенс угла наклона в этой точке.
Уравнение прямой в общем виде y=kx+b, где k - это как раз тот тангенс который мы найдем по производной, а b - свободный член.
Приступим к расчетам:
F(x) =х^2+1,х0=1
Возьмем производную
F(x)'=2x
тогда производная в точке Xo=1: F(Xo)'=2
значит k=tg(a)=2
получаем прямую y=2x+b
осталось чтобы прямая проходила через заданную точку функции
найдем значение функции в точке Xo=1: F(Xo)=1^2+1=2
значит прямая должна проходить через точку (1;2)
подставим точку в полученное уравнение прямой чтобы найти коэф. b
2=2*1+b
b=0
значит уравнение касательной y=2x
Г)А теперь повторим все только без обьяснений)
f(x)=х^3-1,х0=2
f(x)'=3x^2
f(Xo)'=2^2*3=12
k=tg(a)=6;=> y=12x+b
f(Xo)=2^3-1=7; => (2;7)
подставляем чтобы найти b
7=2*12+b
7=24+b
b=-14
Значит уравнение касательной в точке y=12x-14
№1
а) √50 > 7
√50 > √7²
√50 > √49
б) 4√6 > 3√7
√4²*6 > √3²*7
√16*6 > √9*7
√96 > √63
№2
а) √(196 * 0,64) = √(14²*(0,8)²) = 14 * 0,8 = 11,2
б) √(72*0,5)=√36=√6² = 6
в)
г) √(-2)⁶ = √((-2)³)²=(-2)³= - 8
№3
а) (√3+√2)² = (√3)²+ 2 *√3*√2 + (√2)²= 3 + 2√6 + 2 = 5 +2√6
б) (4 - √5)(4 + √5) = 4² - (√5)² = 16 - 5 = 11
в) 5√12 - 2√27 - 3√3 = 5√(4*3) - 2√(9*3) - 3√3 = 5√(2²*3) - 2√(3²*3) - 3√3 = 5*2√3 - 2*3√3 - 3√3= 10√3 - 6√3 - 3√3 = √3
№4
√(72*а⁵) = √(36*2 * а⁴*а)= √(6²*2 * (а²)² * а) = 6*а²*√(2а)
№5
№6
Поделитесь своими знаниями, ответьте на вопрос:
Запишите величину 982 миллиона километров в стандартном виде
^8-это в восьмой степени