Gaziev1636
?>

Решиить уравнение (3х^2-2х-5)*(х+2)=0 ^ -степень

Алгебра

Ответы

koam20167459

(3х^2-2х-5)*(х+2)=0

уравнение равно 0,если один из множителей равен 0,а другой при этом смысла не теряет

(3х^2-2х-5)=0 или                              (х+2)=0

3х^2-2х-5=0                                                    х=-2

d=b^2-4ac

d=(-2)^2-4*3*(-5)

d=64

x1,2=-b+-корень из d/2*a

x1,2=2+-8/6

x1=10/6

x1=5/3

x1=1 целая 2/3

х2=-1

ответ: 1 целая 2/3; -1; -2

barkhatl-2p7

3х^2-2x-5=0

d=64

x1,2= 5/3; -1

3(x-5/3)(x+1)(x+2)=0

x=5/3

x=-1

x=-2

bellaalya13862

\frac{x^{2} - 2}{x + \sqrt{2}} = \frac{x^{2} - 2   \cdot x - \sqrt{2}}{(x + \sqrt{2}) (x - \sqrt{2}} = \frac{(x^{2} - 2 )(x - \sqrt{2})}{x^{2}  - 2} = x - \sqrt{2}

\frac{\sqrt{2} + 2}{\sqrt{2}} = \frac{\sqrt{2}(2 + \sqrt{2}}{\sqrt{2}} = 2 + \sqrt{2} = \sqrt{2}(\sqrt{2} + 1)

\frac{a + \sqrt{a}}{a\sqrt{a} + a} =  \frac{\sqrt{a}(\sqrt{a} + 1}{a(\sqrt{a} + 1)} = \frac{1}{\sqrt{a}}

\frac{m + \sqrt{3}}{m^{2} - 3} =  \frac{m + \sqrt{3}   \cdot m - \sqrt{3}}{m^{2} - 3   \cdot m - \sqrt{3}} = \frac{1}{m - \sqrt{3}}

\frac{a - 2\sqrt{5a} + 5}{a - 5} = \frac{(\sqrt{a} - sqrt{5})^{2}}{(\sqrt{a} - \sqrt{5})(\sqrt{a} + \sqrt{5})} = \frac{a - 5}{\sqrt{a} + \sqrt{5}}

Объяснение:

Смотри формулы разности квадратов. Последний пример не ясно, если в числителе \sqrt{5a}, то это одно, а если нет, тогда.... Решаю, как если в числителе a - 2\sqrt{5a} + 5. Тогда получается квадрат разности. Знаменатель раскладываю по формуле разности квадратов.

Редактор дрявый, не даёт печатать, на втором фото, первый пример решается так же, как первый, на первом фото, второй пример на втором фото я уже расписал ранее.

\frac{x^{2} - 2}{x + \sqrt{2}} = \frac{x^{2} - 2 \cdot x - \sqrt{2}}{(x + \sqrt{2}) (x - \sqrt{2}} = \frac{(x^{2} - 2 )(x - \sqrt{2})}{x^{2} - 2} = x - \sqrt{2} \\\\\\\frac{\sqrt{2} + 2}{\sqrt{2}} = \frac{\sqrt{2}(2 + \sqrt{2})}{\sqrt{2}} = 2 + \sqrt{2} = \sqrt{2}(\sqrt{2} + 1) \\\\\\\frac{a + \sqrt{a}}{a\sqrt{a} + a} = \frac{\sqrt{a}(\sqrt{a} + 1)}{a(\sqrt{a} + 1)} = \frac{1}{\sqrt{a}}\\\\\frac{m + \sqrt{3}}{m^{2} - 3} = \frac{(m + \sqrt{3})(m - \sqrt{3})}{(m^{2} - 3)(m - \sqrt{3})} =

Петренко1852

ответ:8 см

ответ:8 смПошаговое объяснение:

ответ:8 смПошаговое объяснение:Диагонали ромба пересекаются под прямым углом, а точка пересечения делит каждую пополам.

ответ:8 смПошаговое объяснение:Диагонали ромба пересекаются под прямым углом, а точка пересечения делит каждую пополам.Пусть диагональ ВD = 6 см, тогда BO = 3 см. По условию AB = 5 см.

ответ:8 смПошаговое объяснение:Диагонали ромба пересекаются под прямым углом, а точка пересечения делит каждую пополам.Пусть диагональ ВD = 6 см, тогда BO = 3 см. По условию AB = 5 см.По теореме Пифагора находим AO:

ответ:8 смПошаговое объяснение:Диагонали ромба пересекаются под прямым углом, а точка пересечения делит каждую пополам.Пусть диагональ ВD = 6 см, тогда BO = 3 см. По условию AB = 5 см.По теореме Пифагора находим AO:AC = 2*AO = 8 см

если дадите коронку я буду благодарна


в ромбе длина стороны равна 8 см, а одна из диагоналей в два раза меньше стороны. найдите длину друг

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решиить уравнение (3х^2-2х-5)*(х+2)=0 ^ -степень
Ваше имя (никнейм)*
Email*
Комментарий*