Надо воспользовать тем, что наименьший положительный период синуса и косинуса равен 2π, а тангенса и котангенса — π. воспользоваться — значит представить исходную функцию, скажем, в виде f(sin kx), где f — монотонная функция (принимающая каждое своё значение только один раз) . тогда период равен 2π/k. 1.42. период равен 2π. 1.44. cos² 3x = (cos 6x + 1)/2, поэтому период равен 2π/6 = π/3. 1.46. lg |sin x| = lg √(sin² x) = ½ lg ((1 – cos 2x)/2), поэтому период равен 2π/2 = π. 1.48. sin^4 x + cos^4 x = (cos² x + sin² x)² – 2 sin² x cos² x = 1 – ½ sin² 2x = 1 – (1 – cos 4x)/4, период равен 2π/4 = π/2. 1.50. |cos(x/2)| = √(cos²(x/2)) = √((cos x + 1)/2), период равен 2π.
ответ:
система имеет бесконечное множество решений.