Геометрическая прогрессия (bn) задана первым членом прогрессии b1 = 12 и знаменателем прогрессии q = 1/3. Для того, чтобы найти сумму бесконечно геометрической прогрессии вспомним формулу нахождения суммы бесконечно геометрической прогрессии.
S = b1/(1 - q);
где |q| < 1.
Условия, которое наложено на знаменатель геометрической прогрессии выполняется, теперь перейдем к нахождению суммы бесконечной геометрической прогрессии.
S = b1/(1 - q) =12/(1 - 1/3) = 12/(2/3) = 12 * 3/2 = 36/2 = 18.
ответ: S = 18.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
(5b-7a)^2=25b^2-70ab+49a^2