Объяснение При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны, значит их сумма 180°:
х - меньший угол, у = 5х
x + 5x = 180°
6x = 180°
x = 30°
∠1 = ∠5 = ∠3 = ∠7 = 30°
у = 180° - 30° = 150°
∠2 = ∠6 = ∠4 = ∠8= 150°
чтобы исследовать функцию на экстремум, надо найти ее производную
у=(х-1)²/х²
это дробь, а производная дроби равна разности произведения производной числителя на знаменатель и произведения числителя на производную знаменателя, деленной на квадрат знаменателя.
у¹ = ((х-1)¹*х² - (х-1)²*(х²)¹)/х⁴= (2х²-2х)/х⁴
у¹=0 - условие экстремума функции
(2х²-2х)/х⁴=0
х≠0 - на ноль делить нельзя
2х²-2х=0
х=0 и х=1 -ноль не подходит, берем 1
чтобы функция имела в точке экстремум надо, чтобы при переходе через точку она меняла знак
вычислим
у(1/2) = 1 > 0
у(2) = 1/4 > 0
знак не поменялся, значит экстремума в этой точке нет.
в точке х=0, в которой функция не определена тоже нет перемены знака
у(-1) = 4 > 0 и у (1/2) = 1 > 0
ответ: функция экстремумов не имеет.
Поделитесь своими знаниями, ответьте на вопрос:
Сократите дробь: 100^k/(2^2k-1)(5^2k-2) подробней, !
100^k/(2*(2k-1))*(5^(2k-2))=
100*k/((2^2k)2^(-)*5^(-2))=
50*100^k/2^2k*5^2k=50*100^k/(2*5)^2k=50*100^k/10^2k=50*100^k/(10^2)^k=50*100^k/100^k=50