Упр.860 по алгебре
Алимов 10-11 класс с пояснениями бесплатно
Изображение задания 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Решение #1
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Дополнительное изображение
Дополнительное изображение
Дополнительное изображение
Решение #2
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Загрузка...
860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:
1) f(x)=x2+x+1,x0=1;
2) f(x)=x-3x,x0=2;
3) f(x)=1/x,x0=3;
4) f(x)=1/x,x0=-2;
5) f(x)=sinx,x0=пи/4;
Объяснение:
Через 18 минут
Объяснение:
после 1 минуты 1 очко - 2⁰=1
после 2 минуты 1*2=2 очка = 2¹
после 3 - 4 очка =2²
после 4 - 8 очков =2³
после 5 - 16 очков = 2⁴
после n минут 2ⁿ⁻¹ очков
Можно заметить что очки начисляются как 2 в степени (минута игры -1)
Соответственно, логарифмируя конечную цифру 100000 по основанию 2 получаем результат - 16,61. То есть, результат 100000 будет достигнут через (16,61+1)=17,61 минут с начала игры. Но, так как очки начисляются только по истечении целой минуты, то после 17 минут игры 100000 еще не будет,а после 18 минут - будет результат превышающий 100000.
Проверяем:
2¹⁷⁻¹ = 65536 очков после 17 минут игры
2¹⁸⁻¹ = 131072 очка после 18 минут игры.
Поделитесь своими знаниями, ответьте на вопрос:
Найти координаты вершины параболы игрек равно икс квадрат плюс один
y=x^2 + 1, значит график функции y= x^2 будет смещен на одно деление вверх. координаты вершины параболы (0; 1)