b5=b1*q^4
1,5=b1*0,5^4
b1=1,5/0,0625
b1=24
s5=b1*(q^5-1)/(q-1)
s5=24*,5)^5-1)/(-1,5)=16,5
Дана функция y=f(x)
где f(x) = { -x +1, если -4 < x < -1
-x² + 3, если -1 < x < 2
а)
f(-4)= -(-4) +1=5
f(-1)= -(-1) +1=2
f(0)= -(0)^2 +3=3
б)
график функции в дополнении
в)
функция определена на ограниченном интервале
функция на данном интервале непрерывна,
функция на данном интервале не является ни четной, ни нечетной
функция на данном интервале не является монотонной, так как производная меняет знак
производная имеет разрыв
функция на данном интервале имеет 2 локальных максимума и 2 локальных минимума
Объяснение:
Дискретная случайная величина задается своим рядом распределения: перечнем значений xi, которые она может принимать, и соответствующих вероятностей pi=P(X=xi). Количество значений случайной величины может быть конечным или счетным. Для определенности будем рассматривать случай i=1,n¯¯¯¯¯¯¯¯. Тогда табличное представление дискретной случайной величины имеет вид:
Xipix1p1x2p2……xnpn
При этом выполняется условие нормировки: сумма всех вероятностей должна быть равна единице
∑i=1npi=1
Графически ряд распределения можно представить полигоном распределения (или многоугольником распределения). Для этого на плоскости откладываются точки с координатами (xi,pi) и соединяются по порядку ломаной линией. Подробные примеры вы найдете ниже.
Числовые характеристики ДСВ
Математическое ожидание:
M(X)=∑i=1nxi⋅pi
Дисперсия:
D(X)=M(X2)−(M(X))2=∑i=1nx2i⋅pi−(M(X))2
Среднее квадратическое отклонение:
σ(X)=D(X)−−−−−√
Коэффициент вариации:
V(X)=σ(X)M(X)
.
Мода: значение Mo=xk с наибольшей вероятностью pk=maxipi.
Поделитесь своими знаниями, ответьте на вопрос:
Пятый член прогрессии равен 1, 5, а знаменатель -0, 5, найдите сумму первых пяти членов этой прогресси
находим b1.
b5=b1*q^4
1.5=b1*0.0625
b1=1.5: 0.0625
b1=24
s5=b1(q^5-1); q-1=24(-0.5^5-1): -0.5-1=24.75: (-1.5)=16.5
s5=16.5