Апикальная плазматическая мембрана, которая обращена в просвет почечных канальцев, имеет множество ворсинок, особенно в проксимальной части.
Дистальная плазматическая мембрана, которая обращена в кровь, имеет множество складок, содержащих скопление митохондрий.
Считается, что в проксимальном отделе происходит активная реабсорбция и секреция электролитов и неэлектролитов, а в петле Генли и дистальном отделе реабсорбция электролитов и секреция катионов калия, протона и аммония. Одно и то же вещество может транспортироваться через ассиметричную клетку по-разному. Так, глюкоза через апикальную мембрану реабсорбируется вторично-активным транспортом, а через проксимальную в кровь – пассивным. Эти и другие виды транспорта (см.Разд.VII) обеспечивают функционирование на протяжении всего почечного канальца уникальной противоградиентной системы.
У поверхности клеток в апикальной части плазматические мембраны идут параллельно друг другу. Различают несколько типов межклеточных контактов:
1.Плотный - нексус (зона 0,4-0,6 мкм, ширина 16 нм).
2.Промежуточный (зона 0,2 мкм, ширина 20 нм).
3.Десмосома (зона 0,4 мкм, ширина 30 нм),
Зона нексуса, по-видимому, непроницаема вообще для каких-то веществ, тогда как промежуточные или щелевые контакты отличает обязательное присутствие в их составе особых каналов диаметром 1,5-3 нм, проницаемых для низкомолекулярных веществ (1-2 кД). Щелевые контакты получили название высокопроницаемых контактов (ВПК). Они становятся чувствительными к механическому разобщению при удалении ионов кальция, алкалозе, действию гипертонического раствора. Их существование может обеспечить транспорт низкомолекулярных веществ в продольном направлении, например в случае движения к глубоким слоям многоклеточной структуры. Считают, что антидиуретический гормон, усиливающий транспорт воды примерно в 10 раз, изменяет проницаемость именно ВПК многослойного почечного эпителия. Во всяком случае, расчеты транспорта воды, проведенные с уравнения Фика (см.Разд.VII), были в 3-5 раз ниже полученных в действительности.
Впервые предположил существование ассиметричности транспорта для ионов натрия Джонсен и Уссинг (1958 г.). В основе их двухмембранной модели лежит предложение о пространственно разделенных системах переноса ионов натрия через мембрану: пассивного и активного транспорта. Если наружняя мембрана (апекс) клетки к пропусканию Na+ пассивно, то внутренняя с К+-насоса удаляет этот ион наружу, создавая градиент для пассивного транспорта (см.Разд.VII).
Ионы калия, которые закачиваются тем же насосом в клетку, покидают ее через внутреннюю мембрану, за счет направленного наружу градиента.
Таким образом, общий мембранный потенциал будет складываться из потенциалов, образуемых ионами натрия и калия:
+ , где:
и
[Na+] и [К+] - концентрации внутриклеточных – in и внеклеточных ионов – ex, соответственно.
В настоящее время доказано, что:
1.Наружняя мембрана ассиметричной клетки проницаема только для ионов Na+ и Li+ и этот процесс протекает с переносчиков пассивно. Эти перносчики не угнетаются блокаторами натриевых каналов ТТХ (см.Разд.VII).
2.Внутри ассиметричной клетки много ионов калия, для которых наружняя мембрана практически не проницаема, а процесс выхода из клетки осуществляется через внутреннюю мембрану.
3.Чувствительный к ингибитору дыхания митохондрий 2,4-динитрофенолу, Na+/К+-насос, как оказалось, локализован на внутренней мембране. Его режим работы электронейтрален (1:1). Он удаляет ион натрия наружу, закачивая внутрь ион калия.
4.В многоклеточных структурах ионы натрия могут располагаться в подэпителияальной части (кожа) и в свободном состоянии во внутриклеточной жидкости (до 40%). Лишь его небольшая часть (8%) является транспортным фондом.
5.Представители систем облегченной диффузии анионного транспорта (симпорт, антипорт) с участием специфических переносчиков представлены в полной мере:
Na+/Cl--обмен Na+/Na+--обмен Na+/H+ – обмен Na+/Ca2+-обмен антипорт– котранспорт
Cl-/HCO3--обмен
Cl-/ Cl--обмен
K+/Cl—и
Na+,K+,2Cl- – симпорт - котранспорт
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Объясните по пунктам: 1, 2, как происходит процесс почвенного питания?
Каждый химический элемент играет в жизни растения особую роль. Фосфор усваивается растением в виде солей фосфорной кислоты (фосфатов) и находится в нём в свободном состоянии или совместно с белками и другими органическими веществами, входящими в состав плазмы и ядра. В свободном состоянии, возможно, регулирует в клетке кислотную и щелочную среду. Сера поглощается растением в виде солей серной кислоты, входит в состав белков и эфирных масел. Калий сосредоточен в молодых органах, богатых плазмой, а также в органах накопления запасных веществ – семенах, клубнях, вероятно, играет роль нейтрализатора кислой реакции клеточного сока и участвует в тургоре. Магний содержится в растении там же, где и калий, и, кроме того, входит в состав хлорофилла. Кальций накапливается во взрослых органах, особенно в листьях, служит нейтрализатором вредной для растения щавелевой кислоты и защищает его от токсического действия различных солей, участвует в образовании механических оболочек. Железо находится в растении в малых количествах, но входит в состав протопластов, и при его недостатке развивающиеся листья не зеленеют, а остаются белыми (явление хлороза) .
Кроме указанных жизненно необходимых элементов, определённое значение имеют хлористый натрий (накапливаясь в клетках галофитов, позволяет увеличить осмотическое давление до 100 атмосфер, благодаря чему они могут противостоять физиологической сухости почвы) , марганец, фтор, йод, бром, цинк, кобальт, стимулирующие рост растений, и др.
Минеральные соединения азота и зольных элементов поглощаются наземными высшими растениями почти исключительно корнями. Соли, как и вода, поглощаются живыми клетками первичной коры корня и корневыми волосками, затем корневым давлением выталкиваются с водой в сосуды, разносятся транспирационным током по другим частям растения и снова принимаются живыми клетками стебля и листа. В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливают избирательную растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем теснее соприкосновение корня с частицами почвы, тем сильнее развита корневая система и тем полнее идёт поглощение солей. Кроме того, корни обладают растворяющей Несомненно, что мощная, сильно разветвлённая корневая система лучшему питанию растения. Прости,что так много просто вдруг тебе это нужно ну можешь по одному предложению списать каждого обзаца.