Чтобы число abcd делилось на 22, оно должно делиться и на 2, и на 11. Произведение цифр 60 можно представить многими способами, основой которых являются произведения - 6*10,20*3,15*4,12*5. Признак делимости на 11: Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11. Таким образом, a+c=b+d или a+c=b+d+11 или a+c+11=b+d. Кроме того, раз число делится на 2, то оно должно быть четным. Согласно перечисленным признакам можно подобрать следующие числа: 5126, 2156, 6512, 1562
Larisa-0888716
09.06.2020
Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число
100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая:
а = 1, с = 5, число 135
а = 3, с = 3, число 333
а = 5, с = 1, число 531
Это все числа, удовлетворяющие условиям
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точки А(1; 1; 5), В(4; 7; 5), С(8; 5; 5), D(5; - 1; 5) являются вершинами прямоугольника ABCD. Найдите больший угол между диагоналями
решение задания по геометрии
