Пусть PQ — средняя линия треугольника DEF, т. е. DP = PE и FQ = = QE. На луче PQ за точку Q отложим отрезок QR, равный отрезку PQ, и точку R соединим с точкой F. Треугольники PQE и RQF равны по двум сторонам и углу между ними. Значит, отрезок RF равен отрезкам EP и DP, а угол EPQ равен углу FRQ. Учитывая, что эти углы являются внутренними накрест лежащими углами при прямых PE и FR, пересеченных прямой PR, получаем, что эти прямые параллельны. По признаку параллелограмма, доказанному в теореме 4 г, утверждаем, что четырехугольник DPRF — параллелограмм.
Из определения параллелограмма получаем, что средняя линия PQ параллельна стороне DF треугольника DEF.
По свойству параллелограмма, доказанному в теореме 3 б, получаем, что DF = PR. Но PR=2PQ. Значит, DF = 2PQ, или окончательно, PQ = 1/2 DF.
kuznecovav3066
16.07.2021
Пусть DB — средняя линия трапеции KLMN. Проведем прямую LB, пусть она пересекает прямую KN в точке С. Треугольники LBM и CBN равны, так как у них углы LBM и CBN равны как вертикальные, углы LMB и CNB равны как накрест лежащие при параллельных LM и KC, пересеченных прямой MN, стороны NB и MB равны по условию. Поэтому отрезки LB и BC равны. Значит, DB есть средняя линия треугольника KLC, а отрезок DB параллелен отрезку KC и, значит, основанию KN трапеции. А поскольку основания KN и LM параллельны, то средняя линия DB параллельна и основанию LM. Мы доказали, что средняя линия трапеции параллельна обоим основаниям трапеции. Докажем теперь, что она равна полусумме этих оснований.
В соответствии с теоремой о средней линии треугольника получаем:
DB = 1/2 KC.
Ho KC = KN + NC, аNC = LM, поэтому DB = 1/2(KN + NC) = -(KN + LM) = KN+LM/2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найди правило, по которому из двух чисел, записанных внизу, получено число, записанное вверху. Запиши нужное число в окошко в третьем круге.
Правило: сумма нижних чисел делится на 4:
(13 + 15) : 4 = 28 : 4 = 7; (17 + 3) : 4 = 20 : 4 = 5; (21 + 15) : 4 = 36 : 4 = 9.