Вообще-то он прав. Если один воспитатель за что-то ругает. а другой это же поощряет, то как это отразится на ребенке? Он не сможет сориентироваться, как же быть дальше. Воспитатели должны действовать сообща. А вот насчет единого точного подхода к ребенку - во Все воспитатели - люди, и у каждого может в силу характера или опыта иметься свой собственный подход, главное, чтобы это было во благо ребенку. Мы же в школах не всех учителей любили. Кто-то имел и свой подход к ученикам. И это не нарушало общую тенденцию в во воспитания и образования.
1. Если f(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0=P_n(x) — алгебраический многочлен, то уравнение (3.1) называется также алгебраическим n-й степени:
P_n(x)\equiv a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0=0,(3.3)
где a_n,\ldots,a_0 — действительные числа, коэффициенты уравнения.
График сеточной функции
2. На практике встречаются задачи нахождения корней уравнения f(x_i)=0, левая часть которого задана сеточной функцией y_i=f(x_i),~i=1,2,\ldots,N (рис. 3.2).
Число x_{\ast} есть корень уравнения (3.1) кратности k, если при x=x_{\ast} вместе с функцией f(x) обращаются в нуль ее производные до (k-1)-го порядка включительно, т.е. f(x_{\ast})= f'(x_{\ast})= \ldots= f^{(k-1)}(x_{\ast})=0, а f^{(k)}(x_{\ast})\ne0. Корень кратности к = 1 называется простым. На рис 3.1,с простыми корнями являются x_{\ast1},x_{\ast2},x_{\ast3}, a корни x_{\ast4},x_{\ast5} — кратные.
В соответствии с классическим результатом Галуа алгебраическое уравнение (3.1) при n\geqslant5 не имеет решения в замкнутом (формульном) виде. Сеточные уравнения вообще не имеют формульных решений. Поэтому корни алгебраических (n>2), трансцендентных и сеточных уравнений, как правило, определяются приближенно с заданной точностью.
Поделитесь своими знаниями, ответьте на вопрос:
Гостиннница на 70 номеров , расчетный период 15 дней .За 15 дней . За 15 дней продано 900 номеров .Выручка за 15 дней составила 1 350 000 руб . Найти среднюю цену за номер
Нет. Ошиблась. Надо удалить