Решение: 1) Трапеция, вписанная в окружность, – равнобедренная.
HQ=BC=AB=CD, AH=QD (где H,D – основания высот, опущенных к большему основанию).Из прямоугольного треугольника ABH с углом B в 30˚ AH=0,5AB по свойству катета против угла в 30˚. Значит, AD=2AH+HQ=AB+HQ=2AB; 2AB=82; AB=41.
2) Окружность описана и вокруг треугольника ABC.Треугольник равнобедренный с углом при вершине в 120˚. Значит, BAC= BCA=30°. Применяем теорему синусов: AB/sin30° =2R, где R – радиус окружно-сти, описанной около треугольника ABC (и около трапеции ABCD). 41/{1/2}=2R; R=41;
Ответ: 41
many858
26.10.2022
Решение: Пусть точки касания окружности противоположных сторон ромба – E и T. Тогда ET– диаметр окружности (точка пересечения диагоналей О – центр симметрии параллелограмма, значит и ромба).
ET – есть расстояние между противоположными сторонами ромба так же, как и высота ромба (DH).
Рассмотрим прямоугольный треугольник ADH. Так как угол А равен 30°по условию, то катет HD, противолежащий этому углу, равен половине гипотенузы AD. То есть HD=ET=29. Значит, радиус вписан-ной окружности есть ET: 2, то есть 14,5.Ответ: 14,5.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Совокупность философских концепций, для которых характерны: 1) отход от символической логики в качестве образца науки и инструмента
HQ=BC=AB=CD, AH=QD (где H,D – основания высот, опущенных к большему основанию).Из прямоугольного треугольника ABH с углом B в 30˚ AH=0,5AB по свойству катета против угла в 30˚. Значит, AD=2AH+HQ=AB+HQ=2AB; 2AB=82; AB=41.
2) Окружность описана и вокруг треугольника ABC.Треугольник равнобедренный с углом при вершине в 120˚. Значит, BAC= BCA=30°. Применяем теорему синусов: AB/sin30° =2R, где R – радиус окружно-сти, описанной около треугольника ABC (и около трапеции ABCD). 41/{1/2}=2R; R=41;
Ответ: 41