Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).
beliaeva2
15.01.2021
Возьмем в плоскости α произвольную точку Х, построим соответствующую точку Х1 (АХ1 : ХХ1 = m : n) и проведем через точку Х1 плоскость β, по параллельную α. Докажем, что плоскость β — соответствующее геометрическое место точек.
1) Для любой точки Y плоскости α точка Y1 пересечения прямой АY1 : Y1Y = АХ1 : Х1Х = m : n, отсюда следует, что любая точка плоскости β удовлетворяет данному условию.
2) Если для точки Y плоскости α точка Y2 делит отрезок АY в отношении m : n, то из соотношения пункта 1 следует, что точка Y2 совпадает с точкой Y1 и поэтому принадлежит плоскости β.
Два указанных утверждения означают, что рассматриваемое геометрическое место точек есть параллельная плоскости α плоскость в.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что при осевой симметрии прямая, параллельная оси, отображается на прямую, параллельную оси.
решение задания по геометрии
