Робочий стіл з'являється на екрані монітора одразу після вдалого завантаження комп'ютера, означає, що комп'ютер готовий до роботи.
lbeglarova6
05.11.2021
Решение
а) Так как темп инфляции за каждый квартал равен 8%, то индекс инфляции за каждый квартал (0,25 года) равен 1,08. Поэтому индекс инфляции за 15 месяцев (1,25 года, или 5 кварталов) составит:
I=1.08^5=1.4693
Обозначим через r искомую годовую процентную ставку и приравняем этот индекс инфляции к множителю наращения при использовании схемы сложных процентов:
(1+г)1,25 =1,4693.
Отсюда:
R=1.4693^1/1.25=0.3605
Таким образом, в этом случае ставка должна превышать 36,05% годовых.
При рассмотрении этого случая можно было рассуждать и таким образом. При инфляции 8% за каждый квартал годовой темп инфляции составит 1,084–1=0,3605=36,05%. Реальное же наращение капитала будет происходить, если годовая процентная ставка превышает годовой темп инфляции, т.е. г > 36,05%.
б) Пусть теперь применяется смешанная схема. Приравнивая индекс инфляции за 1,25 года к множителю наращения, получим квадратное уравнение относительно r:
(1+r)*(1+0,25r)= 1,4693
Решая уравнение, определяем корни: r= –5,3508, r =0,3508.
Очевидно, что по смыслу первый корень не подходит. Следова-тельно, при использовании смешанной схемы ставка должна превышать 35,08% годовых. «Граничное» значение ставки в этом случае получили почти на 1% меньше, чем в предыдущем, что объясняется большей эффективностью смешанной схемы начисления по сравнению со схемой сложных процентов.
Обратим внимание, что для ответа на вопрос в данном случае необходимо фактически решить неравенство:
(1+r)(1+0,25r)>1,4693.
Fomin Korablev1781
05.11.2021
Решение
Покажем, что для данной ситуации нетрудно получить формулу в общем виде. Пусть в течение времени п используется сложная процентная ставка r(m), но при начислении процентов применяется смешанная схема. Тогда множитель наращения имеет вид:
, где w=[mn], f=mn–[mn], n=(w+f)/m.
Множитель наращения при использовании простой процентной ставки имеет вид (1 + nr). Приравнивая эти множители наращения, находим, что эквивалентная простая процентная ставка находится по формуле:
В нашем случае n=35/12 года, m = 4, r(4)=0,3, w=[4•35/12]=[35/3]=11,
f=35/3–11=2/3, поэтому
r=((1+0.3/4)^11* (1+2/3*0.3/4)-1)/35/12=0.4548
т.е. эквивалентная простая процентная ставка равна 45,48%.
Таким образом, из полученной выше формулы следует, что простая процентная ставка r эквивалентна по существу двум процентным ставкам: сложной ставке r(m), применяемой за время, равное целому числу подпериодов, и простой ставке r(m), применяемой за время, равное дробной части подпериода. При этом если дробная часть подпериода равна нулю (f = 0), то w =[mn], а если целое число подпериодов равно нулю (W = 0), то f/m=n, полученная формула примет вид r=r(m).