Объяснение:
Цель работы: найти жесткость пружины из измерений удлинения пружины при различных значениях силы тяжести
уравновешивающей силу упругости на основе закона Гука:
В каждом из опытов жесткость определяется при разных значениях силы упругости и удлинения, т. е. условия опыта меняются. Поэтому для нахождения среднего значения жесткости нельзя вычислить среднее арифметическое результатов измерений. Воспользуемся графическим нахождения среднего значения, который может быть применен в таких случаях. По результатам нескольких опытов построим график зависимости модуля силы упругости Fупр от модуля удлинения |x|. При построении графика по результатам опыта экспериментальные точки могут не оказаться на прямой, которая соответствует формуле
Это связано с погрешностями измерения. В этом случае график надо проводить так, чтобы примерно одинаковое число точек оказалось по разные стороны от прямой. После построения графика возьмите точку на прямой (в средней части графика), определите по нему соответствующие этой точке значения силы упругости и удлинения и вычислите жесткость k. Она и будет искомым средним значением жесткости пружины kср.
Результат измерения обычно записывается в виде выражения k = = kcp±Δk, где Δk — наибольшая абсолютная погрешность измерения. Из курса алгебры (VII класс) известно, что относительная погрешность (εk) равна отношению абсолютной погрешности Δk к значению величины k:
откуда Δk — εkk. Существует правило для расчета относительной погрешности: если определяемая в опыте величина находится в результате умножения и деления приближенных величин, входящих в расчетную формулу, то относительные погрешности складываются. В данной работе
Поэтому
Средства измерения: 1) набор грузов, масса каждого равна m0 = 0,100 кг, а погрешность Δm0 = 0,002 кг; 2) линейка с миллиметровыми делениями.
Материалы: 1) штатив с муфтами и лапкой; 2) спиральная пружина.
Порядок выполнения работы
1. Закрепите на штативе конец спиральной пружины (другой конец пружины снабжен стрелкой-указате-лем и крючком — рис. 176).
2. Рядом с пружиной или за ней установите и закрепите линейку с миллиметровыми делениями.
3. Отметьте и запишите то деление линейки, против которого приходится стрелка-указатель пружины.
4. Подвесьте к пружине груз известной массы и измерьте вызванное им удлинение пружины.
5. К первому грузу добавьте второй, третий и т. д. грузы, записывая каждый раз удлинение |х| пружины. По результатам измерений заполните таблицу:
Номер
опыта
m, кг
mg1, Н
|х|, м
6. По результатам измерений постройте график зависимости силы упругости от удлинения и, пользуясь им, определите среднее значение жесткости пружины kcp.
7. Рассчитайте наибольшую относительную погрешность, с которой найдено значение kср (из опыта с одним грузом). В формуле (1)
так как погрешность при измерении удлинения Δx=1 мм, то
8)
1 Принять g≈10 м/с2.
Закон Гука: «Сила упругости, возникающая при деформации тела, пропорциональна его удлинению и направлена противоположно направлению перемещения частиц тела при деформации».
Закон Гука
Жесткостью называют коэффициент пропорциональности между силой упругости и изменением длины пружины под действием приложенной к ней силы. Согласно третьему закону Ньютона, приложенная к пружине сила по модулю равна возникшей в ней силе упругости. Таким образом жесткость пружины можно выразить как:
где F - приложенная к пружине сила, а х - изменение длины пружины под ее действием. Средства измерения: набор грузов, масса каждого равна m0 = (0,1±0,002) кг.
Линейка с миллиметровыми делениями (Δх = ±0,5 мм). Порядок выполнения работы описан в учебнике и комментариев не требует.
Задача1.
Сначала напишем уравнение пути, пройденного автобусом за третью секунду движения:
S(3)=v0*t+(a*t^2)/2
Где S(3)- путь, пройденный за третью секунду,
v0 - начальная скорость, приобретённая автобусом за предшествующие две секунды движения, t - время рассматриваемого отрезка пути ( в данном случае оно равно1, ведь мы рассматриваем только путь, пройденный за одну, третью, секунду пути, а не за всё время) .
По условию задачи, путь, пройденный автобусом за третью секунду равен 3м:
S(3)=3
Получаем:
v0*t+(a*t^2)/2=3.
v0 в данном случае - это скорость, приобретённая за первую и вторую секунды движения. Она равна произведению ускорения на два (ведь с момента начала движения до начала третьей секунды две секунды) :
v0=2*a
Подставляя это равенство в исходное уравнение, имеем:
2*a*t+(a*t^2)/2=3.
Учитывая, что t=1 (см. выше) , получаем:
2*a+a/2=3
Выносим за скобку множитель a/2:
(a/2)*(4+1)=3
(a/2)*5=3
5*a=6
a=6/5=1,2м/с^2.
Итак, ускорение равно 1,2м/с^2.
Теперь, зная ускорение, найдём путь, пройденный автобусом за все 6 секунд, учитывая при этом, что вычисления будут отличны от расчёта пути за третью секунду из-за того, что начальная скорость в этом случае будет равна уже 0 - ведь вначале первой секунды автобус стоял:
S(6)=(a*t^2)/2= (1,2*6^2)/2= 1,2*36/2= 1,2*18= 21,6(м)
Теперь найдём путь, пройденный автобусом за 5 секунд:
S(5)=(a*t^2)/2= (1,2*5^2)/2= 1,2*25/2=0,6*25= 15(м)
Путь, пройденный за шестую секунду будет равен разности путей, пройденных за 6 и за 5 секунд:
S= S(6)-S(5)= 21,6-15=6,6(м)
Скорость вконце шестой секунды будет равна произведению ускорения на 6 секунд:
V(6)=a*t= 1,2*6= 7,2 м/с.
ответ S=6,6м. , a=1,2 м/с^2., V(6)=7,2М/с.
Задача2.
общий закон скорости при равноускоренном движении выглядит так:
Vx=V0+a*t
Нам же дана формула Vx =6t
Отсутствие первого слагаемого говорит о том, что V0=0
А множитель 6 есть ничто иное, как ускорение. Теперь напишем общий закон изменения координаты при равноускоренном дивжении:
x=x0+V0*t+(at^2)/2
При t=0, x тоже равен нулю ( по условию) :
x0=0
Так как V0=0(см. выше) , слагаемое V0*t так же обращается в ноль. Таким образом, уравнение приобретает вид:
x=0+0+(6t^2)/2. Окончательно, путём устранения нулей и вычислений в третьем слагаемом, получаем:
x=3t^2.
Это и есть искомое уравнение.
Искомый путь же вычисляется по уже не раз применённой нами формуле:
s=(a*t^2)/2=(6*10^2)/2= 6*100/2=300м.
ответ: S=300м., x=3t^2
Поделитесь своими знаниями, ответьте на вопрос:
Автомобиль, движущийся со скоростью 54 км/ч. останавливается у светофора в течении 15с. чему равно ускорение автомобиля?