Рассмотрим случай вращения твердого тела вокруг некоторой произвольной оси 00, (рис. 5.5). Вектор полного момента импульса L тела относительно неподвижной точки на оси вращения в общем случае не параллелен вектору угловой скорости о) и вычисляется согласно определению (4.36):
где ?j и V/ — радиус-вектор и скорость /-й частицы тела относительно полюса — некоторой точки О на рис. 5.5. Используем тот факт, что в системе координат, связанной с телом, составляющие вектора постоянны и скорость vi определяется как й,=1со,/*] согласно (2.20).
Тогда выражение (5.16) можно записать в виде
Отсюда проекция момента импульса на ось Xнеподвижной декартовой системы координат с началом в точке О определяется как линейная функция составляющих вектора угловой скорости со:
Аналогично вычисляются две другие проекции вектора L :
Введенные здесь девять коэффициентов 1тп (т, п — х, у, z) образуют квадратную матрицу, которая преобразуется как тензор второго порядка и называется тензором инерции (тензором момента инерции):
Диагональные компоненты тензора инерции — коэффициенты 7^, 7 , /_. — это моменты инерции тела относительно осей X, У и Z. Недиагональные компоненты тензора (5.17) называются центробежными моментами инерции тела. Поскольку / = 7 , Ixz = /,х и / = I , то тензор инерции является симметричным. В случае, когда масса т твердого тела непрерывно распределена по его объему, , 7 , Iопределяются по формулам (5.6а)—(5.6в). При этом центробежные моменты инерции будут определяться так:
Как известно, любой симметричный тензор или матрицу можно диаго- нализировать, т.е. для любого тела можно выбрать три такие взаимно перпендикулярные оси X, У, Z, для которых все недиагональные компоненты равны нулю и тензор инерции принимает вид
Такие оси являются главными осями инерции тела, а сохранившиеся диагональные компоненты тензора инерции — это главные моменты инерции. Тогда проекции момента импульса на главные оси инерции имеют вид
Как следует из полученных формул, даже в этом случае вектор Z не совпадает с вектором со по направлению.
Таким образом, тензор инерции любого тела зависит от точки, относительно которой он рассчитан. Когда ось вращения твердого тела закреплена и совпадает с одной из осей координат, например с осью Z, то вектор угловой скорости направлен по оси Z (соЛ. =cov, =0 и со. — со) и Т. = /„со=/со. Однако если ось вращения твердого тела не закреплена, то ее нельзя считать все время направленной вдоль фиксированной оси Z и необходимо вычислять все компоненты тензора инерции.
Решение: средняя скорость пути равна v=s/t , где s = s1 + s2 + s3 ; s1 = s2 = s3 (по условию школьник проехал «1/3 пути», затем «еще 1/3 пути» и в конце «последнюю треть пути»); t = t1 + t2 + t3 ; s1 = δr1 = υ1·t1 ; t1 = s1/υ1 ; t2 = s2/υ2 ; t3 = s3/υ3 ; υ1 = 40 км/ч; υ2 = 20 км/ч; υ3 = 10 км/ч. тогда ~\upsilon _{cp} = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3} = \frac{s_1 + s_2 + s_3}{\frac{s_1}{\upsilon _1} + \frac{s_2}{\upsilon _2} + \frac{s_3}{\upsilon _3}} = \frac{s_1 + s_1 + s_1}{\frac{s_1}{\upsilon _1} + \frac{s_1}{\upsilon _2} + \frac{s_1}{\upsilon _3}} = \frac{3}{\frac{1}{\upsilon _1} + \frac{1}{\upsilon _2} + \frac{1}{\upsilon _3}} ; υср ≈ 17 км/ч. ответ: примерно 17 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
1) примеры прямолинейное распространение света 2) угловая высота солнца 20 градусов. как надо расположить плоское зеркало чтобы отраженные лучи направить вертикально вверх?