енение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.
Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчета. Система координат, тело отсчета, с которым она связана, и выбранный измерения времени образуют систему отсчета.
Положение тела задается координатой. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Таким образом, иногда размерами те-ла по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем (). Единица пути — метр (м).
Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (). Перемещение — величина векторная. Единица перемещении метр (м).
Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым, если скорость при неравномерном движении в течение этого промежутка не менялась. Определяющая формула скорости имеет вид . Единица скорости — м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле . Единица ускорения м/с2.
Характеристики механического движения связаны между собой основными кинематическими уравнениями:
; 
На примере рассмотрим свободное падение тела с начальной скоростью
v
0
под действием силы тяжести за промежуток времени
t
. При направлении оси
O
Y
вертикально вниз импульс силы тяжести
F
т
=
mg
, действующий за время
t
, равняется
m
g
t
. Такой импульс равняется изменению импульса тела:
F
т
t
=
m
g
t
=
Δ
p
=
m
(
v
–
v
0
)
, откуда
v
=
v
0
+
g
t
.
Запись совпадает с кинематической формулой определения скорости равноускоренного движения. По модулю сила не изменяется из всего интервала
t
. Когда она изменяема по величине, тогда формула импульса требует подстановки среднего значения силы
F
с
р
из временного промежутка
t
. Рисунок
1
.
16
.
2
показывает, каким образом определяется импульс силы, которая зависит от времени.
Изменение импульса
Рисунок
1
.
16
.
2
.
Вычисление импульса силы по графику зависимости
F
(
t
)
Необходимо выбрать на временной оси интервал
Δ
t
, видно, что сила
F
(
t
)
практически неизменна. Импульс силы
F
(
t
)
Δ
t
за промежуток времени
Δ
t
будет равняться площади заштрихованной фигуры. При разделении временной оси на интервалы на
Δ
t
i
на промежутке от от
0
до
t
, сложить импульсы всех действующих сил из этих промежутков
Δ
t
i
, тогда суммарный импульс силы будет равняться площади образования при ступенчатой и временной осей.
Применив предел
(
Δ
t
i
→
0
)
, можно найти площадь, которая будет ограничиваться графиком
F
(
t
)
и осью
t
. Использование определения импульса силы по графику применимо с любыми законами, где имеются изменяющиеся силы и время. Данное решение ведет к интегрированию функции
F
(
t
)
из интервала
[
0
;
t
]
.
Рисунок
1
.
16
.
2
показывает импульс силы, находящийся на интервале от
t
1
=
0
с до
t
2
=
10
.
Из формулы получим, что
F
с
р
(
t
2
−
t
1
)
=
1
2
F
m
a
x
(
t
2
−
t
1
)
=
100
Н
⋅
с
=
100
к
г
⋅
м
/
с
.
То есть, из примера видно
F
с
р
=
1
2
F
m
a
x
=
10
Н
.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вагон массой 25 тон движется со скоростью 2 м/с и сталкивается неподвижной платформой массой 15 тон. какова скорость совместного движения после срабатывания автосцепки