Размер кубика H = 9 см погружение кубика в воде k = 0,8 объема плотность воды p1 = 1000 кг/м3 плотность кубика p2 долита жидкость с плотностью р3 высота слоя жидкости h = 8 см и совпадает с верхней гранью кубика
закон архимеда для кубика плавающего в воде гласит что масса кубика равна массе вытесненой воды S*H*p2=S*(H*k)*p1 значит р2 = k*p1
закон архимеда для кубика плавающего в смеси двух жидкостей гласит что масса кубика равна массе вытесненых жидкостей S*H*p2=S*(H-h)*p1+S*h*p3 значит H*p2=(H-h)*p1+h*p3
p3 = p1*(1-H/h*(1-k)) - общая формула для этой и аналогичных задач
echervyakov
25.07.2022
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂: