Объяснение:
Задача 1
V = 0,51·c
L₀ = 84 м
L - ?
Лоренцево сокращение длины корабля:
L = L₀·√ (1 - (V/c)² )
L = 84·√ (1 - (0,51·c/c)²) = 84·√ (1 - 0,51²) ≈ 72 м
Задача 2
Релятивистская масса:
m = m₀ /√ (1 - (V/c)²)
m = 92 / √ (1 - (0,53·c/c)²) = 92 / (√ (1 - 0,53²)) ≈ 108 кг
Задача 3
Кинетическая энергия:
T = E₀ ·(1 / (√ (1-(V/c)²)) - 1)
Находим:
√ (1 - (V/с)²) = √ (1 - (0,81·c/c)²) = √ (1 - 0,81²) ≈ 0,586
T = E₀·(1 / (0,586) - 1) = 0,7·E₀
Полная энергия:
Eп = E₀ + T
Eп = E₀ + 0,7·E₀ = 1,7·E₀·
Eп / E₀ = 1,7 или на 70%
Дано:
Найти:
Решение:
Кота и доску можно рассматривать как единую систему. На них не действуют диссипативные силы, а значит энергия системы сохраняется . Возьмём два состояния системы кот-доска: в момент времени, когда кот и доска только начали движение (при условии, что их начальные скорости равны 0) и момент времени ровно через секунду. Тогда закон сохранения энергии:
Потенциальные энергии равны нулю, т.к. всё находится прямо на земле (полу) .
Но в первом состоянии скорости равны нулю. Тогда
Однако мы приняли, что , тогда ( имеет размерность , это не та размерность, которая получится при умножении ускорения на время, а - только численное значение, поэтому и дописываем размерность ).
Таким образом, получим:
<p>\frac{{m}_{к}\times {(|{a}_{к}|\frac{м}{с})}^{2}}{2} + \frac{{m}_{д}\times {(|{a}_{д}|\frac{м}{с})}^{2}}{2}=0 \: \vert : \frac{{m}_{к}}{2}\\1 \: \frac{{м}^{2} }{{с}^{2}} + 4{(|{a}_{д}|\frac{м}{с})}^{2} = 0 \\ |{a}_{д}|\frac{м}{с} = -0.25\frac{м}{с} \\ {a}_{д} = -0.25\frac{м}{{с}^{2}}" class="latex-formula" id="TexFormula14" src="https://tex.z-dn.net/?f=0%3D%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%5Ctimes%20%7B%28%7Ba%7D_%7B%D0%BA%7Dt%29%7D%5E%7B2%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B%7Bm%7D_%7B%D0%B4%7D%5Ctimes%20%7B%28%7Ba%7D_%7B%D0%B4%7Dt%29%7D%5E%7B2%7D%7D%7B2%7D%5C%5C%3C%2Fp%3E%3Cp%3E%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%5Ctimes%20%7B%28%7C%7Ba%7D_%7B%D0%BA%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B%7Bm%7D_%7B%D0%B4%7D%5Ctimes%20%7B%28%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%7D%7B2%7D%3D0%20%5C%3A%20%5Cvert%20%3A%20%5Cfrac%7B%7Bm%7D_%7B%D0%BA%7D%7D%7B2%7D%5C%5C1%20%5C%3A%20%20%5Cfrac%7B%7B%D0%BC%7D%5E%7B2%7D%20%7D%7B%7B%D1%81%7D%5E%7B2%7D%7D%20%20%20%2B%204%7B%28%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%29%7D%5E%7B2%7D%20%3D%200%20%5C%5C%20%7C%7Ba%7D_%7B%D0%B4%7D%7C%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%20%3D%20-0.25%5Cfrac%7B%D0%BC%7D%7B%D1%81%7D%20%5C%5C%20%7Ba%7D_%7B%D0%B4%7D%20%3D%20-0.25%5Cfrac%7B%D0%BC%7D%7B%7B%D1%81%7D%5E%7B2%7D%7D" title="0=\frac{{m}_{к}\times {({a}_{к}t)}^{2}}{2} + \frac{{m}_{д}\times {({a}_{д}t)}^{2}}{2}\\</p><p>\frac{{m}_{к}\times {(|{a}_{к}|\frac{м}{с})}^{2}}{2} + \frac{{m}_{д}\times {(|{a}_{д}|\frac{м}{с})}^{2}}{2}=0 \: \vert : \frac{{m}_{к}}{2}\\1 \: \frac{{м}^{2} }{{с}^{2}} + 4{(|{a}_{д}|\frac{м}{с})}^{2} = 0 \\ |{a}_{д}|\frac{м}{с} = -0.25\frac{м}{с} \\ {a}_{д} = -0.25\frac{м}{{с}^{2}}">
Ускорение получилось отрицательным, потому что доска должна двигаться (или по крайней мере ускоряться) в противоположном направлению движения кота направлении.
Поделитесь своими знаниями, ответьте на вопрос:
Решите в солнечный день от дома высотой hд=36 м образуется тень длиной lд=12 м. определите длину тени от растущего рядом каштана, если его высота hк=4, 8 м
h1/L1=h2/L2
L1/h1=L2/h2
L2=L1*h2/h1=12*4,8/36=4,8/3=1,6 м