Дано:
L0 = 300 м
L = 297 м
с = 3*10⁸ м/с
v - ?
Длина ракеты в той системе координат, в которой ракета покоится, называется собственной длиной. А в системе неподвижного наблюдателя, оставшегося на Земле, длина ракеты будет казаться уменьшённой на 3 метра. Согласно Лоренцеву сокращению длины:
L = L0*√[1 - (v²/c²)]
Выражение под корнем называют релятивистским множителем. Возведём обе части уравнения в квадрат, чтобы извлечь корень, и выразим скорость ракеты:
L² = (L0*√[1 - (v²/c²)])²
L² = L0²*(1 - (v²/c²))
L²/L0² = 1 - (v²/c²)
1 - (L²/L0²) = v²/c²
v² = c²*(1 - (L²/L0²))
v = c*√[1 - (L²/L0²)] =3*10⁸*√[1 - (297²/300²)] = 3*10⁸*√[1 - 0,99] = 3*10⁸*√[0,01] = 3*10⁸*0,1 = 0,3*10⁸ = 3*10⁷ м/с
ответ: 3*10⁷ м/с (или 30 000 км/с).
Н
.
Па
.
.
=0.384
ПаПоделитесь своими знаниями, ответьте на вопрос:
a=12^2/50=144/50=2,88 м/c^2
2)
v=wr
w=2pi/T
T=31536000
w=1,99*10^-7v=1,99*10^-7 * 1,5*10^8 = 29,85 м/с линейная и круговая скорости связаны так: v=wr (где w - собственно и есть круговая) . радиус знаем, вопрос в нахождении w. полагая, что Земля совершает оборот 2П за 365 дней вокруг звезды, можно сказать, что ее угловая скорость равна 2П/(3*10^7) рад/c. тогда умножив получим 30 км/c
3)
Из формулы зависимости линейной и угловой скорости v=w*r, выразим радиус r .
r=v / w, и подставим в формулу центростремительного ускорения a=v^2 / r ,
получим а=v^2 *w / v =v*w . Подставим числа: а=20*6=120м / c^2.
a=120м / c^2.