Объективом проекционного прибора служит тонкая линза с фокусным расстоянием 10 см. Изображение предмета получено на расстоянии 24мм. см от объекта. На какое расстояние переместится изображение, если предмет отодвинуть еще на 21 мм от объектива? Условие: F = 24 мм; f = 21мм см; Δd = 20 см; Определить Δ f - ?Решение. Используем формулу линзы: 1/F = 1/d +1/f ; Определяем, на каком расстоянии находится предмет d = fF/(f –F); Вычисляем (можно и в см): d = 24*21/(24 -21) = 168(мм); Теперь, применяя всё ту же формулу линзы, находим, на каком расстоянии будет изображение, если предмет расположим на расстоянии ; d + Δd = 168 + 20 = 188 (мм); f = dF/(d – F); f = 24*21/(24– 21) = 168мм. Находим, на какое расстояние передвинулось изображение: Δ f = f (2) – f (1) =
В том месте, где сосуды сообщаются, давления в первом и втором на одинаковой высоте равны. Скорее всего, в этом месте у вас вода на рисунке - проверьте. И на поверхностях сосудов давления тоже равны (атмосферному, то есть нулевому, если атмосферное не учитывать).
Ну а дальше считайте давление по формуле плотность*g*высота столбика И, если одна жидкость налита поверх другой, то складывайте давления от столбиков жидкости, получите суммарное...
Дальше - алгебра. Ну и плотности жидкостей нужно в учебнике посмотреть - там они округлены так, чтобы в седьмом классе вас не напрягать арифметикой слишком сильно. В справочнике не стоит смотреть
Поделитесь своими знаниями, ответьте на вопрос:
На экваторе F=2C;
F=G*(M*m)/R^2, где M - масса планеты, R - радиус планеты.
M=p*V; p - плотность планеты, V - объём планеты. V=(4пR^3)/3; п - число пи.
M=(4pпR^3)/3; F=(4/3)*GmпpR;
C=mRw^2, где w - угловая скорость. w=2п/T, где Т - период обращения планеты вокруг своей оси. T=5250 c;
Получили уравнение: (4/3)*GmпpR=2mRw^2; (4/3)*GmпpR=2(mR4п^2)/(T^2);
Сокращаем одинаковые множители: (1/3)*Gp=2п/(T^2);
GpT^2=6п;
p=6п/(GT^2);
p=6п/(6,675*10^-11 * 2,75625*10^7);
p=1,03*10^4 кг/м^3 (округлённо)
правильный вариант - 4)