Для решения используем формулу истечения жидкости при опорожнении открытого в атмосферу сосуда произвольной формы через донное отверстие.
Таким образом, время полного опорожнения резервуара, с постоянным сечением по высоте, при постепенном снижении уровня жидкости в два раза больше времени, которое потребовалось бы в случае истечения того же количества жидкости из отверстия под постоянным максимальным напором H.
а) Из этой формулы определяем So:
Для отверстия в тонкой стенке m= 0,62. время t = 19*60 = 1140 c.
Подставим данные в формулу:
м².
Отсюда находим диаметр выпускного отверстия:
м или примерно 28 мм.
Расход Q определяем из той же формулы, подставив туда значение сечения. Получаем Q = 2,0668 л/с или примерно 2,07 л/с.
б) Время истечения равно t = 2V/Q, где Q - максимальный расход жидкости через отверстие, соответствующий начальному уровню в резервуаре.
Расход Q = 1,5 л/с = 0,0015 м³/с.
t = 2SH/Q = 2*(πD²/4)*H/Q = 2*(3,14159*1²/4)*1,5/0,0015 = 1570,796 с или 26,18 минут.
Если же подставить значение сечения заданного отверстия в формулу для определения времени So = πd²/4 = π*0,025²/4 = 0,0004909 м², то получим результат:
t = 2,3562/(0,62*0,0004909*√(2*10*1,5)) = 1413,478 с или 23,56 минут. Значит, заданный расход в 1,5 л/с не является максимальным расходом жидкости через отверстие, соответствующему начальному уровню в резервуаре.
Поделитесь своими знаниями, ответьте на вопрос:
Велосипедист начинает двигаться из состояния покоя с ускорением 0, 2м/с.по истечению какого времени скорость велосипедиста будет равна 2м/с?
ответ: 10 c
Объяснение:
Я так понимаю в условий есть не большая печатка :
Велосипедист начинает двигаться из состояния покоя с ускорением 0,2 м/с² ... ( а не 0,2 м/с )
v = v0 + at
Т.к. v0 = 0 м/с
v = at
t = v/a
t = 2/0,2 = 10 c