usmanovayanq2626
?>

Спортсмен разбегается с максимальным ускорением и делает прыжок в длину. как велика оказалась длина прыжка, если высота взлета спортсмена h? коэффициент трения принять равным μ, время действия силы трения при разбеге считать равным τ, сопротивлением воздуха пренебречь. [2μτ√{2gh}]

Физика

Ответы

Светлана константин
1) Разберёмся для начала с "максимальным ускорением". Как разгоняется спортсмен? Он опирается на поверхность ногой и толкает себя вперёд с некоторой силой F. Посмотрим, какие силы действуют на опорную ногу в точке соприкосновения с поверхностью.

Человек толкает себя вперёд с силой F, тогда по третьему закону Ньютона на ногу действует сила F в противоположном направлении, т.е. назад. Также существует сила трения Fтр, направленная вперёд. Записываем второй закон Ньютона:
ma=F-F+F_{TP}=F_{TP}

Максимальная сила трения равна F_{TP}^{max}=\mu mg, поэтому максимальное ускорение, которое можно получить, есть
a=\mu g

2) Теперь поговорим о том, что же происходит в задаче. Спортсмен разгоняется с ускорением a (в течение времени τ), в момент отрыва от земли добавляется вертикальная составляющая скорости (горизонтальная остается той же), спортсмен летит по параболе и, наконец, приземляется.
Горизонтальная компонента скорости не меняется и остается равной Vx = μgτ, тогда длина прыжка будет равна Vx * T, где T - время прыжка. Остается найти T.

3) Итак, задача превратилась в стандартную: с некоторой скоростью подбросили вверх нечто (нечто = спортсмен в данном случае), это нечто достигло высоты h и упало обратно. Необходимо найти время полёта T.
Задача решается, например, так: понятно, что искомое время - удвоенное время падения t с высоты h (время подлёта к верхней точки такое же, что и время спуска, а время спуска найти проще). t найдем из равенства
h=\dfrac{gt^2}2\\
t=\sqrt{\dfrac{2h}g}
Отсюда T=2t=2\sqrt{\dfrac{2h}g}

4) Остается получить ответ.
L = V_x\cdot T=\mu g\tau\cdot 2\sqrt{\dfrac{2h}g}=2\mu\tau\sqrt{2gh}
betepah
С наступлением настоящих холодов многие наблюдают извечную картину образования либо конденсата, либо даже льда на стёклах своих балконов или комнат. В дальнейшем при наступлении тепла он тает, сбегает по подоконнику, принося нам немало неприятных сюрпризов. Учитывая масштабность проблемы, стоит разобраться в ней максимально подробно, изучив не только причины её частого появления, но и методики эффективной борьбы с ней.
В чём причина? Из курса физики мы знаем о важности теплообмена, именно в нём и таится основная причина появления конденсата на окнах квартир или застеклённых балконов и лоджий. Порой мы так увлекаемся процессом герметизации квартирного или балконного остекления, что забываем об элементарных правилах естественной вентиляции. Между тем, давайте разберём, что собой представляет балконное остекление или установка пластиковых окон в помещениях и что соответственно может быть причинами образования конденсата на стёклах.
Многие из нас мечтают переоборудовать свой балкон или лоджию в оранжерею, рабочий кабинет, спортивный уголок или место с двумя соломенными креслами и небольшим столиком, но лишь единицы знают и осознают, те преграды и проблемы, которые неизбежно возникнут в процессе создания, так и во время эксплуатации нового полезного места в своей квартире. Поэтому думаю стоит начать с главных причин возникновения конденсата на окнах
MikhailovnaAnastasiya

Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.

В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим (или насыщенным), а воздух, содержащий его, насыщенным.Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осадков. Вследствие всего этого содержание водяного пара в каждом участке атмосферы непрерывно меняется.

С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха. На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, являются важнейшим элементом погоды и климата. Наконец, наличие водяного пара в атмосфере имеет важное значение для физиологических процессов.

Влагосодержание воздуха, прежде всего, зависит от того, сколько водяного пара попадает в атмосферу путем испарения с земной поверхности в том же районе. Естественно, что над океанами оно больше, чем над материками, так как испарение с поверхности океана не ограничено запасами воды. В то же время в каждом месте влагосодержание зависит и от атмосферной циркуляции: воздушные течения приносят в данный район воздушные массы более влажные или более сухие из других областей Земли. Наконец, для каждой температуры существует состояние насыщения, т. е. существует некоторое предельное влагосодержание, которое не может быть превзойдено. Для разных целей применяются еще три характеристики влажности. Во-первых, это точка росы τ, т. е. та температура, при которой содержащийся в воздухе водяной пар мог бы насытить воздух. Так, например, если при температуре воздуха +27° упругость пара в нем 23,4 мб, то такой воздух не является насыщенным. Для того чтобы он стал насыщенным, нужно было бы понизить его температуру до +20°. Вот эта последняя величина +20° и является в данном случае точкой росы для воздуха. Очевидно, что, чем меньше разница между фактической температурой и точкой росы, тем ближе воздух к насыщению. При насыщении точка росы равна фактической температуре.

Другая характеристика называется отношением смеси. Отношение смеси есть содержание водяного пара в граммах на килограмм сухого воздуха. Эта величина мало отличается от удельной влажности.

Третья характеристика — дефицит влажности, т. е. разность между упругостью насыщения E при данной температуре воздуха и фактической упругостью е пара в воздухе: d=E — е. Иначе говоря, дефицит влажности характеризует, сколько водяного пара недостает для насыщения воздуха при данной температуре. Выражается он в миллиметрах ртутного столба или в миллибарах.

Страницы: 1 2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Спортсмен разбегается с максимальным ускорением и делает прыжок в длину. как велика оказалась длина прыжка, если высота взлета спортсмена h? коэффициент трения принять равным μ, время действия силы трения при разбеге считать равным τ, сопротивлением воздуха пренебречь. [2μτ√{2gh}]
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

irohmichaelchikaodiri
Igor120
elegiy
clubgarag701
Николаев
Valerevna Tuzova
avn23
tanu0618
Элизбарян
Yurevna419
Сергей
violetta152028
amayonova
elmiro4ka868617
oskar-pn