P = 2/3 * n*<Ek>, Ek - средняя кинетическая энергия хаотического движения молекул кислорода, n - концентрация молекул, р - давление <Ek> = m₀*<v>²/2, m₀ - масса молекулы кислорода, <v> - средняя скорость хаотического движения молекул кислорода m₀ = M(O₂)/Na, M(O₂) = 32*10⁻³ кг/моль - молярная масса кислорода, Na = 6,02*10²³ моль⁻¹ - постоянная Авогадро Сводим формулу и получаем p = 2/3 * n * M(O₂)/Na * <v>²/2 p = 1/3 * n * M(O₂)/(Na * <v>²) n = 3*p*Na / (M(O₂)*<v>²) = 3*5*10⁵ Па*6,02*10²³ моль⁻¹ / (32*10⁻³ кг/моль * (500 м/с)²) ≈ 1,1*10²⁶ м⁻³
Yekaterina Oksyuta1657
17.10.2021
Дано: кг м ° кг м/с м/с
Найти:
Решение:
1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
При этом h2 аналогично h1 равен:
Перепишем ЗСЭ в виде:
Откуда cosβ:
°
Mikhailovna_Litvinova276
17.10.2021
1) Коробка приобретет импульс, численно равный потери импульса пули:
<Ek> = m₀*<v>²/2, m₀ - масса молекулы кислорода, <v> - средняя скорость хаотического движения молекул кислорода
m₀ = M(O₂)/Na, M(O₂) = 32*10⁻³ кг/моль - молярная масса кислорода,
Na = 6,02*10²³ моль⁻¹ - постоянная Авогадро
Сводим формулу и получаем p = 2/3 * n * M(O₂)/Na * <v>²/2
p = 1/3 * n * M(O₂)/(Na * <v>²)
n = 3*p*Na / (M(O₂)*<v>²) = 3*5*10⁵ Па*6,02*10²³ моль⁻¹ / (32*10⁻³ кг/моль * (500 м/с)²) ≈ 1,1*10²⁶ м⁻³