Ускорение задано в векторной форме, здесь ī,ĵ орты осей х и у соответственно, что означает ā=ī*ax+ĵ*ay, то есть ах=А..., ау=В - суть выражения проекций на оси х,у (все это функции времени, конечно).
Но с другой стороны, по определению ускорение (и векторно, и в проекциях) ах=dVx/dt, или чисто формально dVx=ах*dt. Берем интеграл от левой и правой, имеем: (dVx)==Vx=S(ax*dt), это по определению интеграла.
Вот и находим наши табличные интегралы при нулевых н.у.: Vx=At³/3T², Vy=Bt^5/5T⁴ [T -это тау]. А теперь искомый тангенс на плоскости х0у: tgф=Vy/Vx=3Bt²/5AT²= 0.9 -ответ
Поделитесь своими знаниями, ответьте на вопрос:
Тело масою 1 кг вольно падает з высоты 5м. на какой высоте кинетическая енергия тела доривнюватыме його потенциальний енергии? якою буде скорость руху тела на етой высоте?
Eп = m g h = 1 * 10 * 5 = 50 Дж
Потенциальная энергия тела:
Eк = m V^2 / 2
В процессе падения потенциальная скорость будет переходить в кинетическую, значит в той точке, в которой они равны, каждая составит по половине первоначальной (25 Дж). Благодаря этому мы можем найти скорость в искомой точке:
V^2 = 2 Eк / m = 2 * 25 / 1 = 50
V = м/с.
Тело находится в свободном падении, значит на него действует ускорение g. Скорость и время падения в этом случае (при отсутствии начальной скорости) связаны взаимоотношением:
V = g t
Отсюда
t = V / g = / 10 c.
Зная время равноускоренного движения, можно найти пройденный телом путь:
s = g t^2 / 2 = (10 * 50 / 100) / 2 = 2,5
Вычтя этот путь из начальной высоты, получим:
5 - 2,5 = 2,5 м