Опускающийся груз производит положительную работу, действуя своим весом на опору или подвес; при этом он может, скажем, раскручивать колесо или поднимать другой груз. Следовательно, поднятый груз обладает совершать работу. Если груз движется с постоянной скоростью, его вес равен действующей на него сипе тяжести (см. тему «Вес и невесомость), так что при равномерном движении груза вниз работа, совершаемая весом тела, равна работе приложенной к грузу силы тяжести. Поэтому в дальнейшем, говоря о подъеме или опускании груза, мы будем говорить о работе силы тяжести.
2. Распрямляющаяся пружина совершает положительную работу, действуя силой упругости на другое тело, - скажем, приводя в движение какой-либо механизм (как в заводных часах или заводной игрушке). Следовательно, деформированная пружина обладает совершать работу.
3. Если скорость тела уменьшается, значит, другие тела его «тормозят», то есть действуют на него с силой, направленной противоположно его перемещению. При этом согласно третьему закону Ньютона со стороны этого тела действует сила, направленная в сторону перемещения тела, - и эта сила совершает положительную работу. Следовательно, движущееся тело обладает совершать работу. Например, движущаяся с большой скоростью струя пара, ударяя в лопасти колеса паровой турбины, приводит это колесо в движение. Скорость же струи пара при этом значительно уменьшается (пар, как говорят, становится «отработанным», хотя точнее было бы называть его «отработавшим»),
Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
Поделитесь своими знаниями, ответьте на вопрос:
Как построить солнечную систему? по