Колебательный контур — электрическая цепь, содержащая последовательно соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания
Принцип действия
Пусть конденсатор ёмкостью C заряжен до напряжения U0. Энергия, запасённая в конденсаторе составляет
При соединении конденсатора с катушкой индуктивности ,в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия колебательного контура EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
где L — индуктивность катушки, I0 — максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения − U0.
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
В общем, описанные выше процесы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличии от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Online Mektep мобильді қосымшасын жүктеп алыңыз
Online Mektep logotype
Басты бет Кесте №5 зертханалық жұмыс. Өткiзгiштердi тiзбектей қосуды зерделеу
3-тоқсан
«Еленовка ОМ» КММ
Ақмола облысы, Зеренді ауданы, Еленовка а.
8 А
Bilimland logotype
Акку
Кульбаева
Оқушы
BilimLevel 0%
0
Жеке кабинет
Online Mektep
Мемл.қызметтер
Көмек
Жаңалықтар
BilimCenter
BilimLand
Компьютерлер
iTest
Twig-Bilim
iMektep
08 АҚПАН
ФИЗИКА - 8 А
№5 ЗЕРТХАНАЛЫҚ ЖҰМЫС. ӨТКIЗГIШТЕРДI ТIЗБЕКТЕЙ ҚОСУДЫ ЗЕРДЕЛЕУ
САБАҚ
ВИДЕОКОНФЕРЕНЦИЯ
Чат ашу
№5 зертханалық жұмыс. Өткiзгiштердi тiзбектей қосуды зерделеу
өзге шамдар да сөніп қалады
өзгеріс болмайды
шамдар сол күйінде жанып тұрады
шамдар одан сайын жарығырақ жанады
Сайтта қате таптыңыз ба?
ZERO.kz
Поделитесь своими знаниями, ответьте на вопрос:
Что такое плечо силы? как выражается формула момента силы? примеры на использование рычага в жизне и технике
M= F·l= F·r·sin(α) или M=векторF * вектор r
M — момент силы (Ньютон · метр),
F — Приложенная сила (Ньютон),
r — расстояние от центра вращения до места приложения силы (метр),
l — длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),
α — угол, между вектором силы F и вектором положения r