pimenov5
?>

Тело массой 100 кг упало с высоты 10 м.чему равна потенциальная энергия тела?

Физика

Ответы

samoilovcoc
Если оно уже упало и покоится, потенциальная энергия равно нулю.

Дано:
m = 100кг
g = 9.8 м/с²
h = 0м

Найти:
Ep

Решение:
Ep = mgh
т. к. тело уже упало и покоится, h = 0
отсюда Ep = 100 · 9.8 · 0 = 0 (Дж)

ответ:
Потенциальная энергия Ep = 0Дж

Примечание: 
О потенциальной энергии нет смысла говорить как об абсолютной величине. Если очень грубо и на пальцах, потенциальная энергия тела зависит от поверхности, относительно которой она считается. Поскольку по условиям задачи тело уже упало на некоторую поверхность, мы решаем задачу относительно этой поверхности.  
Olga1233
ПЕРВЫЙ

Рассмотрим обычную гуковскую пружину длины    L \ ,    и жёсткостью    k \ ,    деформацию которой обозначим, как    l \ .    Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:

F = -kl \ ;

Рассмотрим некоторое состояние [1] :    F_1 = -kl_1
и некоторое состояние [2] :    F_2 = -kl_2

При вычитании этих уравнений получим, что для двух любых состояний верно, что:

F_2 - F_1 = -k ( l_2 - l_1 ) \ ;

\Delta F = -k \Delta l \ ;

Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.

В нашем случае, в состоянии равновесия    z = 0    – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на    z 0 \ ,    (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:

\Delta F_d = - k_d z < 0    – это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.

В то же время, при изменении положения груза на    z 0 \ ,    (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:

\Delta F_u = - k_u z < 0    – это символизирует уменьшение  положительной (направленной вверх) величины силы верхней пружины.

Общее изменение силы составит (сила тяжести не изменится):

\Delta F = \Delta F_d + \Delta F_u = - ( k_d + k_u ) z \ ;

При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на    z \ ,    общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:

F = - ( k_d + k_u ) z \ ;
(рассуждения для отрицательного смещения производятся аналогично)

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ВТОРОЙ

Пусть начальные растяжения пружин:    l_d   (нижней), и    l_u   (верхней). При этом положим вертикальное положение груза    z = 0 \ .    Ось    Oz    направлена вверх.

Запишем закон сохранения энергии для произвольного положения груза:

\frac{mv^2}{2} + mgz + \frac{k_d}{2} ( l_d + z )^2 + \frac{k_u}{2} ( l_u - z )^2 = const \ ;

Продифференцируем уравнение по времени:

mvv'_t + mgz'_t + k_d ( l_d + z ) z'_t - k_u ( l_u - z ) z'_t = 0 \ ; \ \ \ \ || : z'_t

mv'_t + mg + k_d ( z + l_d ) + k_u ( z - l_u ) = 0 \ ;

mz''_t = k_u l_u - k_d l_d - mg -( k_d + k_u )z \ ;

Заметим, что в начальном положении, действие всех сил скомпенсировано:

k_u l_u - k_d l_d - mg = 0 \ ;
(сила только верхней пружины положительна, т.к. направлена вверх)

Итак:

mz''_t = -( k_d + k_u )z \ ;

А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ТРЕТИЙ

Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.

Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.

Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:

Итак:

F = -( k_d + k_u )z \ ;

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \ ,    где    m    –  масса шарика.

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \ .

ЧИСЛЕННЫЙ РАСЧЁТ :::

1   Н/см   = 100   Н   : 100   см   = 100   Н   : 1   м   = 100   Н/м ;

3   Н/см   = 300   Н   : 100   см   = 300   Н   : 1   м   = 300   Н/м ;

Допустим, масса шарика равна 1 кг. Тогда:

T = 2 \pi \sqrt{ \frac{m}{ k_d + k_u } } \approx 2 \pi \sqrt{ \frac{1}{ 300 + 100 } } \approx 0.314   сек ;

\nu = \frac{1}{2 \pi} \sqrt{ \frac{ k_d + k_u }{m} } \approx \frac{1}{2 \pi} \sqrt{ \frac{ 300 + 100 }{1} } \approx 3.18    Гц .
sancity997124
При сложении относительной скорости ветра со скоростью баржи получается собственная скорость ветра. Это показано на иллюстрации к решению задачи векторами    \overline{ V }_{Bmp}    и    \overline{ V }_{omH} \ .

Легко понять, что множество таких возможных векторов скорости ветра    \overline{ V }_{Bmp}    ограниченно окружностью радиуса    V_1    с центром в конце вектора    \overline{ V }_1 \ .

Аналогично можно понять, что множество тех же возможных векторов скорости ветра    \overline{ V }_{Bmp}    ограниченно окружностью радиуса    V_2    с центром в конце вектора    \overline{ V }_2 \ .

Откуда видно, что максимальная скорость ветра    \overline{ V }_{max}    определяется условиями, наложенными на множество точек возможных векторов. И её значение можно найти геометрически из прямоугольных треугольников.

Гипотенуза    | \Delta \overline{ V } |    прямоугольного треугольника с катетами    V_1    и    V_2    равна пяти.

| \Delta \overline{ V } | = \sqrt{ V_1^2 + V_2^2 } \ ;

Двойная площадь этого треугольника равна:

2S = V_1 V_2 \ ;

С другой стороны двойная площадь этого треугольника равна произведению гипотенузы на половину искомого вектора максимальной скорости ветра (являющуюся высотой к гипотенузе):

2S = V_1 V_2 = \frac{V_{max}}{2} \cdot | \Delta \overline{ V } | \ ;

V_{max} = \frac{ 2 V_1 V_2 }{ \sqrt{ V_1^2 + V_2^2 } } = \frac{ 2 }{ \sqrt{ 1/V_1^2 + 1/V_2^2 } }    –  средне-квадратично-гармоническое.

Угол между баржей и максимальным ветром найдём из того же прямоугольного треугольника, через угол между красным катетом и высотой, который из подобия равен углу между векторами    \overline{V}_2    и гипотенузой    \Delta \overline{ V }    

tg{ \varphi } = \frac{V_1}{V_2} \ ;

1)    V_{max} = \frac{ 2 }{ \sqrt{ 1/V_1^2 + 1/V_2^2 } } \approx \frac{ 2 }{ \sqrt{ 1/9 + 1/16 } } = 4.8   м/с

2)    \varphi = arctg{ \frac{V_1}{V_2} } \approx arctg{ \frac{3}{4} } \approx 36^o 52' \ .

Две самоходные баржи равномерно движутся перпендикулярно друг другу по озеру. скорость первой v1=3м/

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Тело массой 100 кг упало с высоты 10 м.чему равна потенциальная энергия тела?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

italiankarest
topshopnails
Татьяна
avetisov-84850
Akopovich802
oyudina
Svetlana395
Melnik Kaveshnikova1746
Татьяна902
nadezhda81
koptevan6
baumanec199613
AnnaChulyukanova3
Оксана
ayk111560