Подробное решение, ! два тела подвешены за нерастяжимую и невесомую нить к идеальному блоку, как показано на рисунке. при этом первое тело массой m1 движется из состояния покоя вниз с ускорением a = 2 м/с2. если первое тело опустить в воду с плотностью ρ = 1000 кг/м3, находящуюся в большом объёме, система будет находиться в равновесии. при этом объём погружённой в воду части тела равен 1.5 ×10^-4 м3. определите массу первого тела m1.
Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения O . К концам рычага (точкам A и B) приложены силы \vec F_{1} и \vec F_{2}. Плечи этих сил равны соответственно l_{1} и l_{2}.
Условие равновесия рычага даётся правилом моментов: F_{1} l_{1}=F_{2} l_{2}, откуда
Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.
Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).
Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).
Мария Кашихина
05.03.2020
В любом положениии жука, по графику, мы можем найти соответствующую его положению скорость. Пусть расстояние между
делениями равно тогда мы можем выразить время, которое тратит жук на прохождение расстояния между
каждой парой делений:
Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.
Значит полное время, которое он затратил на прохождение линейки равно:
Поскольку нам дана средняя скорость, то мы можем определить длину L линейки Глюка, как:
Но с другой стороны, длина линейки Глюка, очевидно, равна поскольку мы изначальнго определили
Объяснение:
Рычаг.
Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения O . К концам рычага (точкам A и B) приложены силы \vec F_{1} и \vec F_{2}. Плечи этих сил равны соответственно l_{1} и l_{2}.
Условие равновесия рычага даётся правилом моментов: F_{1} l_{1}=F_{2} l_{2}, откуда
\frac{\displaystyle F_{\displaystyle 1}}{\displaystyle F_{\displaystyle 2}}=\frac{\displaystyle l_{\displaystyle 2}}{\displaystyle l_{\displaystyle 1}}.
Рис. 1. Рычаг
Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.
Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).
Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).