Для всех трех задач вспомним, что радиус-вектор представляет собой гипотенузу прямоугольного треугольника, а его проекции на оси координат -- катеты этот треугольника.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
α = arccos 3/6 = arccos 1/2 = 60°.
papushinrv4985
29.08.2021
Для всех трех задач вспомним, что радиус-вектор представляет собой гипотенузу прямоугольного треугольника, а его проекции на оси координат -- катеты этот треугольника.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
α = arccos 3/6 = arccos 1/2 = 60°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Брусок действует на опору с силой 200 н, при этом он оказывает давление 4 кпа. какова площадь опоры бруска?
F=200Н
p=4кПа=4000Па
Найти:S
Решение:
1) р=F/S=>
S=F/p=200/4000=0,05м^2
ответ: 0,05 м^2