Космический полёт — это путешествие или транспортировка в или через космос. Чёткая граница между Землёй и космосом отсутствует, и Международной авиационной федерацией была принята границей высота в 100 км от поверхности Земли. Чтобы на такой высоте летательный аппарат летел благодаря действию аэродинамических сил, необходимо иметь первую космическую скорость[1][2], что делает полёт скорее орбитальным, чем аэродинамическим[3][4]. Классическое разделение между авиа- и космическим полётами всё больше размывается благодаря развитию суборбитальных космических кораблей и орбитальных самолётов.Хотя представление о путешествиях к Луне, планетам и звёздам существовало давно, лишь в XX веке с развитием ракетной техники, которая обеспечивала бы необходимое ускорение для покидания планеты, это стало возможным и является единственным Возможно, первым, кто указал на пригодность ракеты для путешествий в безвоздушном пространстве, был шотландский астроном Уильям Лейтч. В 1861 году он написал эссе "A Journey Through Space", которое было в 1862 году опубликовано в его книге "God's Glory in the Heavens"[5]. В 1881 году Николай Иванович Кибальчич выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. За несколько дней до казни Кибальчич разработал оригинальный проект летательного аппарата совершать космические перелёты.[6]
sashaleb88
24.03.2020
Закон Кулона F = kQq/R², в форме, сформулированный в элементарной электростатике – имеет фундаментальный универсальный смысл и остаётся верен и в случае физики Эйнштейна, если движение зарядов перпендикулярно линии взаимодействия, поскольку связывает независящие от системы отсчёта величины: силу, заряды и поперечное расстояние. Правда, формула F = kQq/R² в этом случае – это не сила Кулона, а суммарная сила взаимодействия двух зарядов, включающая в себя нечто большее.
Сила взаимодействия двух зарядов kQq/R², перпендикулярно соединяющей их линии останется точно такой же и в случае их движения, или движения одного из них поперёк соединяющей их линии. Тем не менее, в случае взаимодействия не просто одиночных зарядов, а потоков подвижных зарядов (электротоков), когда сила воздействия одного потока заряженных частиц на элементы параллельного – складывается, как суперпозиция отдельных сил Кулона – всё усложняется тем, что продольные расстояния при относительном движении сжимаются, и силы относительно-подвижных взаимодействий становятся больше сил относительно-неподвижных взаимодействий. Причём, оказывается, что силы Кулона зависят от относительной скорости движения квадратично.
Если, скажем, токи одной природы (например, электронные) однонаправленные, то силы Кулона относительно подвижных элементов [ep] – это силы притяжения, и они сильнее, а силы Кулона относительно неподвижных элементов [ee]/[pp] – это силы отталкивания, и они слабее. Возникает притяжение.
Если, скажем, токи разной природы (электронный и положительно-ионный) однонаправленные (т.е. математически разнонаправленные токи), то силы Кулона относительно подвижных элементов [ee]/[pp] – это силы отталкивания, и они сильнее, а силы Кулона относительно неподвижных элементов [ep] – это силы притяжения, и они слабее. Возникает отталкивание.
Если, токи одной природы разнонаправленные, то силы Кулона относительно подвижных элементов [ep] – это силы притяжения, и они умеренные, а силы Кулона относительно сильно-подвижных элементов [ee]/[pp] – это силы отталкивания, и они квадратично большие. Возникает отталкивание. Четвёртый вариант нетрудно разобрать самостоятельно.
В итоге, получается, что два однонаправленных тока (уже с учётом и природы и направления потоков) начинают притягиваться, а два разнонаправленных тока – отталкиваться. При математическом обобщении (интегрировании) всех отличий относительно-подвижных сил Кулона от относительно-неподвижных сил Кулона – выясняется, что общая сила притяжения однонаправленных токов выражается так, как будто между каждыми двумя отдельными зарядами возникает взаимодействие, описываемое той же формулой, как и сила Кулона, но с добавочным коэффициентом пропорциональности:
F = k(QV/c)(qv/c)/R² , где V/c – приведённая скорость первого тока, а v/c – приведённая скорость второго тока.
Таким образом, оказывается удобным ввести отдельный термин и отдельно учитывать часть поля подвижных заряженных частиц. Этот кусочек (слагаемое) взаимодействия называют магнетизмом и магнитным слагаемым в законе взаимодействия. И этот факт – превосходное доказательство теории относительности Эйнштейна.
Между двумя зарядами, расположенными на линии перпендикулярной их движению возникает сила, которую можно записать так:
F = kQq/R² = [1+Vv/c²]kQq/R² – [Vv/c²]kQq/R² ;
где договорились называть:
F = [1+Vv/c²] kQq/R² – силой Кулона (положительное направление – отталкивание), а
F = –k/c² [VQ][vq]/R² – силой Магнитного взаимодействия Био-Савара-Лапласа (знак минус – притяжение).
Выражение закона Био-Савара-Лапласа здесь показано в элементарной форме, когда линия взаимодействия зарядов перпендикулярна скоростям движения зарядов.
Важно понимать, что магнитная составляющая взаимодействия в данном случае – величина относительная. Если мы начнём двигаться со скоростью этих протонов – то слагаемое Био-Савара-Лапласа вообще полностью обнулится, и, стало быть – в их системе отсчёта магнитная стрелка перестанет ориентироваться, указывая на отсутствие магнитного поля. В то же время в нашей системе отсчёта – магнитная стрелка будет отклоняться. Поскольку само магнитное поле – это псевдо-поле, зависящее от системы отсчёта. Электро-поле никогда не исчезает, но нужно понимать, что и оно меняется. Неизменным останется лишь суммарное электромагнитное воздействие, даваемое в общем законом Кулона и законом Био-Савара-Лапласа в суперпозиции.
*** [ограничивают зачем-то 5000 символов, поэтому – читаем слудующее решение]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Определите массу бетонной плиты , размер которой 2×0, 7×0, 2м. плотность бетона 2200кг/м кубические
Дано: Решение:
p=2200кг/м^3 p=m/V,следовательно m=p*V
V=2*0,7*0,2 m=2200*2*0,7*0,2=616 кг
m=?